




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆湖北省沙洋中學高三5月階段性測試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)2.明代數(shù)學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.3.函數(shù)f(x)=的圖象大致為()A. B.C. D.4.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或5.集合,,則()A. B. C. D.6.當輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.7.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.8.設i為數(shù)單位,為z的共軛復數(shù),若,則()A. B. C. D.9.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據的分組依次為,若低于60分的人數(shù)是18人,則該班的學生人數(shù)是()A.45 B.50 C.55 D.6010.拋擲一枚質地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.11.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要12.設函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.已知正項等比數(shù)列中,,則__________.14.曲線y=e-5x+2在點(0,3)處的切線方程為________.15.設,則“”是“”的__________條件.16.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經過點.(1)求的值及該圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.18.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.19.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).20.(12分)已知數(shù)列的前n項和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)若數(shù)列中去掉數(shù)列的項后余下的項按原順序組成數(shù)列,求的值.21.(12分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.22.(10分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據周期為2依次平移,并結合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數(shù)性質的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結合思想,屬于中檔題.2.C【解析】
根據程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.3.D【解析】
根據函數(shù)為非偶函數(shù)可排除兩個選項,再根據特殊值可區(qū)分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【點睛】本題主要考查了函數(shù)圖象的對稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.4.A【解析】
根據題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:
①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.
故選:A.【點睛】本小題主要考查直線與圓的位置關系、雙曲線的簡單性質等基礎知識,考查運算求解能力,考查數(shù)形結合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.5.A【解析】
解一元二次不等式化簡集合A,再根據對數(shù)的真數(shù)大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.6.A【解析】
根據循環(huán)結構的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結構輸出結果、幾何概型的概率,模擬程序運行是解題的關鍵,屬于基礎題.7.D【解析】
根據底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.8.A【解析】
由復數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵.9.D【解析】
根據頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據樣本容量求出班級人數(shù).【詳解】根據頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題10.A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復數(shù)量,可得事件的樣本點數(shù),根據古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎題11.B【解析】
利用充分條件、必要條件與集合包含關系之間的等價關系,即可得出?!驹斀狻吭O對應的集合是,由解得且對應的集合是,所以,故是的必要不充分條件,故選B?!军c睛】本題主要考查充分條件、必要條件的判斷方法——集合關系法。設,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。12.C【解析】
根據函數(shù)奇偶性的性質即可得到結論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據函數(shù)奇偶性的定義是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎題.14..【解析】
先利用導數(shù)求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導數(shù)的幾何意義和函數(shù)的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2)函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,相應的切線方程是15.充分必要【解析】
根據充分條件和必要條件的定義可判斷兩者之間的條件關系.【詳解】當時,有,故“”是“”的充分條件.當時,有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點睛】本題考查充分必要條件的判斷,可利用定義來判斷,也可以根據兩個條件構成命題及逆命題的真假來判斷,還可以利用兩個條件對應的集合的包含關系來判斷,本題屬于容易題.16.【解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉化能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),圓的方程為:.(2)答案見解析【解析】
(1)根據題意,可知點的坐標為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設的方程為,與拋物線聯(lián)立方程組,根據,求得,化簡解得,進而求得點的坐標為,分別求出,,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點的坐標為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標為.所以,,.故.【點睛】本題考查拋物線的標準方程和圓的方程,考查直線和拋物線的位置關系,利用聯(lián)立方程組、求交點坐標以及向量的數(shù)量積,考查解題能力和計算能力.18.(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據函數(shù)的單調性問題轉化為證明,即證,令,根據函數(shù)的單調性證明即可.【詳解】(Ⅰ)的定義域為且令,得;令,得在上單調遞增,在上單調遞減函數(shù)的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調遞增,在上單調遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點睛】本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,考查不等式的證明,考查運算求解能力及化歸與轉化思想,關鍵是能夠構造出合適的函數(shù),將問題轉化為函數(shù)最值的求解問題,屬于難題.19.(1)(2)三個零點【解析】
(1)由題意知恒成立,構造函數(shù),對函數(shù)求導,求得函數(shù)最值,進而得到結果;(2)當時先對函數(shù)求導研究函數(shù)的單調性可得到函數(shù)有兩個極值點,再證,.【詳解】(1)由得,由題意知恒成立,即,設,,時,遞減,時,,遞增;故,即,故的取值范圍是.(2)當時,單調,無極值;當時,,一方面,,且在遞減,所以在區(qū)間有一個零點.另一方面,,設,則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個零點.因此,當時在和各有一個零點,將這兩個零點記為,,當時,即;當時,即;當時,即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點,是函數(shù)的極小值點.下面證明:,由得,即,由得,令,則,①當時,遞減,則,而,故;②當時,遞減,則,而,故;一方面,因為,又,且在遞增,所以在上有一個零點,即在上有一個零點.另一方面,根據得,則有:,又,且在遞增,故在上有一個零點,故在上有一個零點.又,故有三個零點.【點睛】本題考查函數(shù)的零點,導數(shù)的綜合應用.在研究函數(shù)零點時,有一種方法是把函數(shù)的零點轉化為方程的解,再把方程的解轉化為函數(shù)圖象的交點,特別是利用分離參數(shù)法轉化為動直線與函數(shù)圖象交點問題,這樣就可利用導數(shù)研究新函數(shù)的單調性與極值,從而得出函數(shù)的變化趨勢,得出結論.20.(1)證明見解析,;(2)11202.【解析】
(1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項公式;(2)由(1)中的可求出,根據和求出數(shù)列,中的公共項,分組求和,結合等比數(shù)列和等差數(shù)列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南民族大學《現(xiàn)代儀器分析及實驗》2023-2024學年第二學期期末試卷
- 吉林交通職業(yè)技術學院《媒介批評學B》2023-2024學年第二學期期末試卷
- 保定職業(yè)技術學院《數(shù)字信號處理實訓》2023-2024學年第二學期期末試卷
- 唐山科技職業(yè)技術學院《晶體生長原理與技術》2023-2024學年第二學期期末試卷
- 甘肅中醫(yī)藥大學《高分子材料成型模具》2023-2024學年第二學期期末試卷
- 大理大學《C語言》2023-2024學年第二學期期末試卷
- 重慶城市管理職業(yè)學院《衛(wèi)生法學》2023-2024學年第二學期期末試卷
- 陽江職業(yè)技術學院《動物生產學牛羊》2023-2024學年第二學期期末試卷
- 西藏大學《建筑安全與技術》2023-2024學年第二學期期末試卷
- 肇慶學院《機器學習算法》2023-2024學年第二學期期末試卷
- 伊犁將軍府課件
- 中醫(yī)護理不良事件
- 初中常見原子團及其化合價、化學式、化學方程式
- 《城市公園配套設施設計導則》
- 供應鏈安全培訓教材課件
- 2024年醫(yī)院考勤的管理制度
- 卡西歐手表5213(PRG-550)中文說明書
- 2024年度北京市安全員之B證(項目負責人)測試卷(含答案)
- 蘋果電腦macOS效率手冊
- 2024年新人教版七年級上冊數(shù)學教學課件 第四章 整式的加減 章末復習
- 卸車工合同協(xié)議書
評論
0/150
提交評論