版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
InternationalJournalofInfectiousDiseases148(2024)107167
Contentslistsavailableat
ScienceDirect
InternationalJournalofInfectiousDiseases
journalhomepage:
/locate/ijid
COVID-19increasedexistinggendermortalitygapsinhigh-incomemorethanmiddle-incomecountries
KathleenBeegle
1,*,
GabrielDemombynes
1,
DamiendeWalque
1,
PaulGubbins
2,
JeremyVeillard
3,#
1WorldBank,Washington,D.C.,USA
2Consultant,Chile
3WorldBank,Colombia
checkfor
updates
articleinfo
abstract
Articlehistory:
Received12April2024Revised27June2024Accepted3July2024
Objective:ToanalyzehowpatternsofexcessmortalityvariedbysexandagegroupsacrosscountriesduringtheCOVID-19pandemicandtheirassociationwithcountryincomelevel.
Methods:WeusedWorldHealthOrganizationexcessmortalityestimatesbysexandagegroupsfor75countriesin2020and62countriesin2021,restrictingthesampletoestimatesbasedonrecordedall-causemortalitydata.Weexaminedpatternsacrosscountriesusingcountry-speci?cPoissonregressionswithobservationsconsistingofthenumberofexcessdeathsbygroupsde?nedbysexandage.
Findings:Mendieathigherratesinnearlyallplacesandatallagesbeyondage45.In2020,thepan-demicampli?edthisgendermortalitygapfortheworld,butwithvariationacrosscountriesandbycoun-tryincomelevel.Inhigh-incomecountries,ratesofexcessmortalityweremuchhigherformenthanwomen.Incontrast,inmiddle-incomecountries,thesexratioofexcessmortalitywassimilartothesexratioofexpectedall-causemortality.Theexacerbationofthesexratioofexcessmortalityobservedin2020inhigh-incomecountries,however,declinedin2021.
Conclusion:TheCOVID-19pandemichaskilledmenatmuchhigherratesthanwomen,ashasbeenwelldocumented,butthesegenderdifferenceshavevariedbycountryincome.Thesedifferencesweretheresultofsomecombinationofvariationingenderpatternsofinfectionratesandinfectionfatalityratesacrosscountries.Thegendergapinmortalitydeclinedinhigh-incomecountriesin2021,likelyasaresultofthefasterrolloutofvaccinationagainstCOVID-19.
?2024PublishedbyElsevierLtdonbehalfofInternationalSocietyforInfectiousDiseases.ThisisanopenaccessarticleundertheCCBY-NC-NDIGOlicense
(/licenses/by-nc-nd/3.0/igo/)
Keywords:
CoronavirusPandemic
DevelopingCountriesMortality
Gender
Introduction
Inallcountriesaroundtheworld,womenlivelongerthanmen
[1,2]
.Thereiswell-establishedevidenceofagendermortalitygapdrivenbyarangeofenvironmental,genetic,andculturalfactors
[3]
.Thepersistenceofhighermortalityformenthanwomenhasbeendocumentedwithdatatypicallydrawnprincipallyfromhigh-incomecountries
[4]
.Butthesepatternshavealsobeenshowninlow-incomeregionsoftheworld
[5]
.
*Correspondingauthor:KathleenBeegle,WorldBank,USA.E-mailaddress:
kbeegle@
(K.Beegle).
#Beegleisthecorrespondingauthor.The?ndings,interpretations,andconclu-sionsexpressedinthispaperareentirelythoseoftheauthors.Theydonotnec-essarilyrepresenttheviewsoftheWorldBankanditsa?liatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepre-sent.
Priortothe1950s,disproportionatelyhigherdeathsofmalethanfemaleinfantswerethemaindriverofthelongerlifeex-pectancyofwomen,butmorerecentlytheelevatedmortalityofoldermenhasdriventhegendergapinlifeexpectancy
[6]
.TheCOVID-19pandemicexacerbatedthisgapasage-standardizedex-cessdeathrateswerehigherformenthanwomeninmanycoun-tries
[7,8]
.Thesexinequalityinmortalitygrewinmanyhigh-incomecountriesduetoCOVID-19,thoughintheUS,thisdispar-ityhasbeencharacterizedasmodest,andmortalityfromthepan-demichasnotchangedthe“fundamentaldynamic”ofsexmor-talitygaps
[9]
.Likewise,forEuropeancountries,thedifferenceinmortalitybysexduringtheCOVID-19pandemicissimilartopre-pandemicpatterns
[10]
.Innon-high-incomesettings,bothCOVID-19andexcessdeathage-mortalitycurvesare?atter,onlyinpartduetopopulationstructure
[11]
.Thissuggeststhattheextenttowhichthegendergapinmortalityincreasedlikelydiffersacrosscountryincomelevels.Inpartduetothelackofdata,previous
/10.1016/j.ijid.2024.107167
1201-9712/?2024PublishedbyElsevierLtdonbehalfofInternationalSocietyforInfectiousDiseases.ThisisanopenaccessarticleundertheCCBY-NC-NDIGOlicense
(/licenses/by-nc-nd/3.0/igo/)
2
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
detailedanalysisofCOVID-19mortalitypatternsbyagehavecom-binedbothsexes,neglectingthiswell-establishedfactthatmortal-ityratesofmenarehigherthanthatofwomenandthatthismightvarybycountryincomelevel.
Thisstudydrawsonrecentdatathatwerenotavailableforearlierstudiestoexaminetheextenttowhichthegendergapinmortalityshiftedinhigh-andmiddle-incomecountriesduringtheCOVID-19pandemic.Unfortunately,underdevelopedcivilregistra-tionsystemsforreportingonmaleandfemaledeathslimitsdata
availabilityinlow-incomecountries,apersistentlimitationinthe
studyofglobalpopulation-levelmortalitypatterns.
Methods
Datasources
Weusethe“GlobalexcessdeathsassociatedwithCOVID-19(modelledestimates)”dataset(May19,2023update),producedbyWHO’sTechnicalAdvisoryGrouponCOVID-19mortalityassess-ment.Thisdatasetcontainsestimatesofexpectedall-causedeaths,all-causedeaths(actualorpredictedifactualwasnotavailable),andexcessdeathsbyagegroupandsexfor194countriesfor2020and2021.Expectedall-causedeathswereforecastedusinghistoriccountry-levelmonthlymortalitydatapriortothepandemicandserveasreferencepointintheabsenceofCOVID-19.Excessdeathswerecomputedas“themortalityabovewhatwouldbeexpectedbasedonthenon-crisismortalityrateinthepopulationofinterest”bydifferencingactual/predictedall-causedeathsfromexpectedall-causedeaths
[12]
.Thereisextensivedocumentationofthedataandmethodsappliedtogeneratetheseestimates
[13]
.
TheseestimatesarenotofdirectCOVID-19deathsonlybutratherareanestimateofthecombinationofdirectandindirectCOVID-19mortality,asmeasuredbyexcessdeaths.LackingactualmeasuresofdirectandindirectCOVID-19mortalitybysex,werelyonestimatesofexcessdeathsbysex.WecheckthereliabilityofthesedatabycomparingsexmortalityratiosfromtheestimateofexcessdeathsandthosefromreportedCOVID-19deathsforasub-setofcountriesforwhichthisisavailable.Thisratioofratiosisnotalways1.However,thereisnoclearpatternsuggestingthatthera-tiobasedonexcessdeathsisdifferentfromthatconstructedfromreportedCOVID-19mortality(notshownherebutavailableuponrequest).
ThisdatasetalsocontainspopulationcountsfromtheWorldPopulationProspectsbycountry,year,sex,andage
[8]
.Thedatasetcovers194countriesin2020and194in2021.Forthisanalysis,onlycountrieswithexcessdeathestimatesbasedonactualall-causedeath(notpredicted)bysexandagegroupareincluded.Thislimitsthesampleto75countriesin2020and62countriesin2021.Additionally,weexcludecountrieswithtotalexcessdeaths(bothsexescombined)below2000ineither2020or2021.After
applyingthesetwocriteria,wehave66countriesinthisanaly-
sis:54in2020and57in2021
.1
Lastly,weanalyzemortalitydataonlyforadults45yearsandolder,sinceexcessdeathratesareex-tremelylowforyoungerages.
1The66-countrysampleusedfromtheWHOGlobalExcessDeathsdatasetisdividedintothreeincometerciles.Incometercile1(GNIpercapitaPPPrange$5030-$15,530)includesAlbania,Azerbaijan,Bolivia(PlurinationalStateof),Brazil,Colombia,Cuba,Ecuador,Egypt,Georgia,Guatemala,Iran(IslamicRepublicof),Iraq,Kyrgyzstan,RepublicofMoldova,Mongolia,Nicaragua,Peru,Paraguay,SouthAfrica,Tunisia,Ukraine,andUzbekistan.Incometercile2(GNIpercapitaPPPrange$16,090-$33,730)includesArgentina,Bulgaria,BosniaandHerzegovina,Chile,CostaRica,DominicanRepublic,Greece,Croatia,Hungary,Kazakhstan,Latvia,MalaysiaMexico,Oman,Panama,Poland,Romania,RussianFederation,Serbia,Slovakia,Thai-land,andUruguay.Incometercile3(GNIpercapitaPPPrange$36,330-$70,150)includesAustralia,Austria,Belgium,Canada,Switzerland,Czechia,Germany,Spain,Estonia,Finland,France,TheUnitedKingdom,Israel,Italy,Japan,RepublicofKorea,Kuwait,Lithuania,Netherlands,Portugal,Sweden,andUSA.
Characterizingage-mortalitypatterns
Tocharacterizetheage-mortalitypatternsdrawingonthedatafrommultiplecountries,weestimateamodeloftheage-mortalitycurvewithinteractionsbysexforeachcountry.Therearethreereasonsforthismodelingasacomplementtoanalysisofthecoun-trymortalitydatadescribedabove.First,themodelproducesaslopeoftheage-mortalitycurvebysex.Second,itenablestheuseofpredictedvaluesforsomeestimatedquantitieswhichminimizethein?uenceofoutliers.Andthird,wecanusethemodeltocom-putecon?denceintervalsforcharacterizationoftheage-sexmor-talitypatternsforthesethreemortalityindicators.
Themodelsareestimatedseparatelyfor2020and2021by?t-tingaPoissonregressionusingdeathsastheresponsevariableandpopulationasanoffset.
Dx,s,i~Poisson(ux,s,iθi)where
θi=exp(β0,i+β1,i×Male+β2,iAge+β3,i×Age×Male)
wheretheageandsex-speci?cnumberofdeathsisDx,s,iforthe10-yearagegroupagextoagex+9,x={45,55,65,75,85}forsexs={Male,Female}incountryi.Thex=85datapointscorre-spondtothegroupconsistingofallages85yearsandabove.Tointerpretdeathcountsasmortalityrates(fortheage-sex-speci?cpopulation),anexposuretermux,s,iwasintroducedasanoffsetinthemodelaslog(ux,s,i).Maleisabinaryvariablewhere1corre-spondstomenand0correspondstowomenandAgeisacontin-uousvariablecenteredatage65.Thecoe?cientsexp(β0,i)repre-sentthemortalityrateforfemalesattheageof65years,exp(β1,i)representsthemale-to-femalemortalityrateratioattheageof65,exp(β2,i)representsthemortalityrateratioforfemalesthatdifferby10yearsinage,exp(β2,i+β3,i)representsthemortalityratera-tioformalesthatdifferby10yearsinage.ThePoissonregressionwas?tseparatelywithDx,s,ide?nedintermsofexpectedall-causedeathsandwithDx,s,ide?nedintermsofestimatedexcessdeathsforbothyears.Forthelatter,whenestimatedexcessdeathswerelessthan0,theywererecodedto0.
Oncetheparametersofeachcountrywereestimatedforex-pectedall-causeandexcessdeathsforbothyears,asimulation-basedinferencewasusedtogaugeuncertaintyaroundpredictedsexratiosofmortalityforeachcountryandagegroup.UsingtheclarifypackageforR,1000setsofcoe?cientsweresimulatedfromtheirimplieddistributionafter?ttingthemodeltothedata.Foreachcountry,thesesimulatedcoe?cientswereusedtogeneratepredictionsofthemortalityrateformalesandfemalesforeachofthe?veagegroups,bycountryandyear.Takingtheratioofthesimulatedpredictedmortalityratesformalesandfemalesyieldedadistributionof1000predictedsexratiosofmortalityforeachagegroupthatcanbeusedforinferenceandgeneratinguncertaintybounds.
Results
Westartwithsomebriefdescriptivesofthedatawehaveavail-able.Themale-to-femaleratioofexpectedall-causemortalitybyagegroup(startingatage45)fornearlyeverycountryin2020isaboveone
(Figure1)
.Theloneexceptionsareamongsttheoldestagegroups(85+)inAlbaniaandBosniaandHerzegovina,alongwithages55-74inKuwait.Inalmostallcountries,thesexratiodeclinesstartingwiththe65-74agegrouporearlier.Thehandfulofcountrieswhichdonot?tthispatternareBolivia,Egypt,Iran,Kuwait,andNicaragua.Therangeonthesexratiogenerallystaysbetween1and2.Insum,amongthecountriesinthissample,atage50,menwerejustovertwiceaslikelytobeexpectedtodiefromallcausesthanwomen,onaverage,in2020.Thepatternof
3
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure1.2020Expectedall-causemale-femalemortalityratio.Descriptionoftheillustration:2020Expectedall-causemale-femalemortalitybyagegroup(startingatage
45)andcountry.
thesexratioinmortalitybyagetendstotakeaninverseJ-shape.Theseresultsforall-causemortalityareconsistentwithevidencenotedearlierthatpre-datestheCOVID-19pandemic.
Thepatternofsexratioinexcessdeathsin2020byageisstillfavoringwomen
(Figure2
),butalsoshowsmuchmorevariationacrosscountriesascomparedtoagenerallyconsistentpatternwe
observeinexpectedall-causemortalityin
Figure1.
Thegeneralde-clineormildinverseJ-shapeseenin
Figure1
acrossallcountriesisnolongerpresent.Instead,weobserveawiderangeofdifferingpatterns,insomecasesaJshaperatherthananinverseJshape(suchasinIranandSouthAfrica).Populationsizemayalsofac-torintothewidevariationinpatternsinthesexratioofexcess
4
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure2.2020Excessmale-femalemortalityratio.Descriptionoftheillustration:2020Excessmale-femalemortalityratiobyagegroup(startingatage45)andcountry.
deathssincesmallercountrieshaveworseP-scores(theratioofex-cessdeathstoexpecteddeaths)
[13]
.Overall,thegreatervariationinpatternsinthegenderratioforexcessdeathsascomparedtoexpectedall-causemortalitysuggestscountryvariationinCOVID-19sex-agemortalityrates.Inadditiontothepatternsdiffering,thescaleitselfismuchwider.Whereasbeforetheratiogenerallystayedbetween1and2,wenowhavesomeextremelyhighratios,
andahandfulofvaluesbelow1(andinafewcases,below0).Forexample,theexcessmortalitysexratioformenandwomeninGer-manyages65-74jumpsto30,whereasitisnegativeforGermanadults45-54years.Forboth45-54and55-64yearsolds,thesexratioisnegativeintheDominicanRepublicbutjumpstoover18for75-84and85+agegroups.Partofthisre?ectsthesensitivityofratiosforsmallbase-valuecomparisons.Forexample,inHungary,
5
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure3.Predictedmortalitysexratiobyagegroupandcountryincometercile.Descriptionoftheillustration:Predictedmortalitysexratiobyagegroupandcountryincometercile,withuncertaintybars.
theestimateofexcessdeathsforwomen45-54yearsoldis?3.3(effectively0),whereasformenitis126,resultinginaratioof?37.Similarly,intheDominicanRepublic,therewere14estimatedexcessdeathsforwomen85andolder,comparedto256formen,resultinginaratioof19.
DrawingonourPoissonestimates,
Table1
reportstheesti-matesoffourmeasures:femalemortalityatage65,male-femalemortalityratioatage65,andtheageslopeoffemaleandmalemortalityforanadditional10yearsofage.Theseareestimatedfor2020expectedall-causemortality,2020excessmortality,and2021excessmortality.
Table1
showsthepopulation-weightedre-sultsoverallandforeachofthreecountry-incometercilegroupings(population-weighted),aswellaseachcountryresult.
In2020,theaverageratioofmale-to-femalemortalityishigherforexcessdeaths(2.21)thanforexpectedall-causedeaths(1.69)(2020columns2androw1of
Table1
),andthisisalsothecaseforeachofthethreecountry-incometercilegroups.COVID-19am-pli?edthegendermortalitygap,atleastattheagepointof65,in2020.By2021,thesexratioofexcessdeathshasfallen(to1.84)butisstillabovethesexratioforexpectedall-causemortalityin2020(1.69).However,acrossincometercilesthereisvariation.Inthelowestincomegrouping,theexcessmortalitysexratioin2021isslightlylowerthanforexpectedall-cause2020,whereasinthehigh-incomecountries,itremainswellabove(2.23in2021and2.3in2020comparedto1.71forexpectedall-causedeathsin2020).
Theslopeofthecurveofmortalitybyage(thechangeinmortalityassociatedwithanadditional10yearsofage)goesup
sharplyfromexpectedall-causetoexcessdeathsforbothwomen
(from2.95to3.46)andformen(2.49-2.89)in2020.Andthisslopeisgreaterforwomenthanmen,asisexpectedgiventhehighermortalityratesatyoungeragesformeninexcessdeathsin2020.(Thesexratioofmortalityatage65isnecessarilylinkedtotheage-slopeofmortalityforwomenandmen.)Thesepatternsinex-cessmortalityshiftremarkablyby2021.By2021,theageslopeofmortalityshowsmuchlessofagap;itisrelativelysimilarforwomen(2.40)andformen(2.33).Thisshort-livedpatternsug-geststhatCOVID-19maynothavelong-lastingimplicationsforthegendergapinmortalityinhigh-incomecountries,aswasobserved
withthe1918in?uenzaepidemic(whereaselectioneffectresultedinadecreaseinthegendergapinmortalityinyearsfollowingthatepidemic)
[14]
.But,totheextentthatolderpersondeathswerees-peciallydisplacedinthe?rst2yearsofCOVID-19,mortalityrisksmaydeclinemoreforhardesthitgroupsinsubsequentyears
[15]
.
Notably,thispatterninexcessdeathsage-slopesdiffersacrossourcountry-incometercilesin2020.Theageslopeofmortalityishighestforwomeninhigh-incomecountriesfor2020(bothex-pectedall-causedeathsandexcessdeaths),butitfallsdramati-callyby2021whenitisslightlylowerthanthatofmen(2.40forwomenand2.49formen).Ontheotherhand,incountriesinthe?rstandsecondterciles,in2021,theageslopeinmortalityre-mainsslightlyhigherforwomen.
Alastpointofnoteisthatfemaleexcessmortalityatage65increasesdramatically(almostdoubles)forcountriesinthe?rstandsecondtercilesfrom2020to2021(from447to832forter-cile1countries,andfrom439to824fortercile2countries),whereasitincreasesmuchmoremodestlyfrom2020to2021forthehigh-incomecountriesintercile3(from131to149).Anotherwaytoviewthepatternsbyage,sex,andcountry,istoexaminethemortalitysexratio(M/F)forcountriesbytercileofGNIpercapita,asshownin
Figure3.
These?guresshowthatthewiden-ingofthegendermortalitygapdrivenbyCOVID-19in2020waslimitedtohigher-incomecountriesandprincipallyamongadultsages45-54and55-65.
Figure4
displaysthesamedatawithin-dividualcountrypoints.Thepatternsshowndonotchangesub-stantivelywhenusingthesubsetofcountriesheldconstantacrossyears.
Discussion
Thisarticle,usingaglobaldatasetcoveringawideswathofmiddle-andhigh-incomecountries,con?rmsprevious?ndings,basedonmorelimiteddata,thatforallagegroupsaboveage45andinallcountrieswithfewexceptions,mendieathigherratesthanwomen.Italsoidenti?esglobalvariationinpatternsofCOVID-19mortalitybyageandsex.The?ndingscomplementpre-vious?ndings
[10]
showingthattheagecurveofexcessdeaths
6
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Table1
Mortalityratesbyage,sex,andcountrydescriptionofthetable:descriptionoftheillustration:Countryregressionestimatesdescribinghowmortalityratesvarybyageandsex.
7
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure4.PredictedmortalitysexratiobyagegroupandcountryGNIpercap.Descriptionoftheillustration:PredictedmortalitysexratiowithindividualcountrydatapointsbyagegroupandcountryGNIpercapita,withuncertaintybars.
in2020was?atterformiddle-incomecountriesandsteeperinwealthiercountries.The?ndingsinthisarticledemonstratethatthisdifferenceisprincipallydrivenbythemortalitypatternsofmen,resultinginCOVID-19amplifyingthegendermortalitygapin2020moreinrichercountriesascomparedtoless-wealthycoun-tries.
Animportantlimitationofthisstudyisthatbecauseitexcludesexcessmortalityestimatesnotbasedonactualobservedmortality,itdoesnotincludeanylow-incomecountries.Suchcountrieshavemortalitypatternsthataredistinctfromthoseinmiddleandhigh-incomeeconomies,notablywell-documenteddifferingchronicandinfectiousdiseasepatternsasmajordriversofmortality.Datashowclustersofcountriesintomortality“convergenceclubs”markedbybothgeographicregionandincomelevel
[16]
.InthecontextofCOVID-19,infectionfatalityratesaresigni?cantlyhigherinlow-incomecountriesthanhigh-incomesettings
[17]
.Meanwhile,thegendergapinlifeexpectancybetweenwomenandmenwidensascountryincomelevelincreases
[18
],thoughfatalityratesfromCOVID-19arehigherformenthanwomeninlow-incomecoun-triesinAfrica,ashasbeenshowninotherpartsoftheworld
[19]
.Takentogether,thesepointsaresuggestivethattheexac-erbationofthegendergapinhigh-incomerelativetomiddle-incomesettingswouldextendtoacomparisonwithlow-incomecontexts.
Overall,these?ndingspointtotheneedtoconsiderpublicpoliciesduringpublichealthemergenciesthatoffermoretar-getedprotectionforcertaingroups,inthiscase,menover45withco-morbidities,suchasgreatereffortstotargetinterven-tionstothoseworkinginjobsexposingthemtoahigherriskofinfections.
Thepatternsfoundwillhopefullyinspirefuturecountry-levelresearchusingcause-of-deathdatatogetafullerunderstandingofrelevantdriversofage-gendermortalitypatterns,whicharebothbiologicalandsocial.Itisworthwhiletoexplorestructuralsocioe-conomicconditionsthatvarywithcountryincomeandsex,whichwouldalsointeractwithbothinfectionexposureandfatalityrates.Thiswouldinclude,forexample,thestructureofjobsandem-ploymentpatterns(welldocumentedtovarybycountryincomeandsex),especiallytheextentofremoteworkopportunitieswhichmayreduceexposuretoinfectionsduringapandemic.Anotherex-ampleistheextentofresidencyinlong-termcarefacilities.Olderpersons,especiallyolderwomen,havehigherlikelihoodsofresid-inginnursinghomesinwealthiercountriesthanlower-incomesettings.Whenthesefacilitiesareofpoorqualityandsafetytheyresultingreaterexposure
[20]
.Athirdareacouldbethepro-?leofco-morbiditiespre-existinginthepopulation.Forexample,womenarerelativelymoreobesethanmeninlowandmiddle-incomeeconomiesbutnotinhigh-incomecountries
[21]
.Speci?c
8
K.Beegle,G.Demombynes,D.deWalqueetal.
toCOVID-19,thereisevidencethatwomenaremorelikelytogetdiagnosedthanmeninhigh-incomecontexts
[22
],butthismaybelesslikelyinmiddleandlow-incomesettingswheregendergapsinaccesstohealthcarearearguablygreaterthanforhigh-incomesettings
[20].
Lastly,theanalysisinthisarticleisalsoareminderofthevalueofdemographicdataandthevalueofeffortsbycountrygovern-mentsandinternationalorganizationstopromoteandstandardizevitalstatisticsdata.
Declarationsofcompetinginterest
Theauthorshavenocompetinginterestsorcon?ictofinteresttodeclare.
Funding
ThisworkwassupportedbytheWorldBankResearchSupportBudget.
Ethicalapproval
Thisworkusespubli
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度民辦學(xué)校教師職稱評定與晉升合同3篇
- 2025版高端住宅門窗定制與施工一體化合同3篇
- 二零二五年度新能源出租車司機聘用合同樣本
- 二零二五年度出租車公司司機外包管理合同法律意見
- 2025知識產(chǎn)權(quán)勞動合同補充協(xié)議范本:企業(yè)知識產(chǎn)權(quán)布局與戰(zhàn)略規(guī)劃3篇
- 二零二五年度土地承包經(jīng)營權(quán)轉(zhuǎn)讓合同
- 2025年度智能化農(nóng)業(yè)大棚建設(shè)與土地租賃合同
- 2025年度木托盤生產(chǎn)原料供應(yīng)鏈金融合同4篇
- 二零二五年度牛羊肉產(chǎn)業(yè)鏈投資合作合同4篇
- 2025年度農(nóng)業(yè)種植與農(nóng)產(chǎn)品溯源技術(shù)服務(wù)合同4篇
- 2024年安全教育培訓(xùn)試題附完整答案(奪冠系列)
- 神農(nóng)架研學(xué)課程設(shè)計
- 文化資本與民族認同建構(gòu)-洞察分析
- 2025新譯林版英語七年級下單詞默寫表
- 【超星學(xué)習(xí)通】馬克思主義基本原理(南開大學(xué))爾雅章節(jié)測試網(wǎng)課答案
- 《錫膏培訓(xùn)教材》課件
- 斷絕父子關(guān)系協(xié)議書
- 福建省公路水運工程試驗檢測費用參考指標(biāo)
- 2024年中國工業(yè)涂料行業(yè)發(fā)展現(xiàn)狀、市場前景、投資方向分析報告(智研咨詢發(fā)布)
- 自然科學(xué)基礎(chǔ)(小學(xué)教育專業(yè))全套教學(xué)課件
- 《工程勘察資質(zhì)分級標(biāo)準和工程設(shè)計資質(zhì)分級標(biāo)準》
評論
0/150
提交評論