江蘇省無錫市育才中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第1頁
江蘇省無錫市育才中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第2頁
江蘇省無錫市育才中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第3頁
江蘇省無錫市育才中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第4頁
江蘇省無錫市育才中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省無錫市育才中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長為()A. B. C. D.2.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(

)A.1

B.-1

C.2

D.-23.如圖,,且.、是上兩點(diǎn),,.若,,,則的長為()A. B. C. D.4.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°5.如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:26.如圖,在△ABC中,點(diǎn)D是AB邊上的一點(diǎn),若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.47.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點(diǎn),P為弧BC上一動點(diǎn)(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.438.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°9.一個(gè)多邊形的每個(gè)內(nèi)角均為120°,則這個(gè)多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形10.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標(biāo)軸有3個(gè)不同交點(diǎn);⑤邊長相等的多邊形內(nèi)角都相等.從中任選一個(gè)命題是真命題的概率為()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若am=5,an=6,則am+n=________.12.如圖,等邊△ABC的邊長為6,∠ABC,∠ACB的角平分線交于點(diǎn)D,過點(diǎn)D作EF∥BC,交AB、CD于點(diǎn)E、F,則EF的長度為_____.13.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.14.如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=6x15.因式分解:9a3b﹣ab=_____.16.圓錐的底面半徑為4cm,高為5cm,則它的表面積為______cm1.三、解答題(共8題,共72分)17.(8分)已知關(guān)于的方程mx2+(2m-1)x+m-1=0(m≠0).求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求整數(shù)的值.18.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點(diǎn),連接CD,過點(diǎn)A作AE⊥CD于點(diǎn)E,且交BC于點(diǎn)F,AG平分∠BAC交CD于點(diǎn)G.求證:BF=AG.19.(8分)某農(nóng)場急需銨肥8噸,在該農(nóng)場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價(jià)750元;B公司有銨肥7噸,每噸售價(jià)700元,汽車每千米的運(yùn)輸費(fèi)用b(單位:元/千米)與運(yùn)輸重量a(單位:噸)的關(guān)系如圖所示.(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);(2)若農(nóng)場到B公司的路程是農(nóng)場到A公司路程的2倍,農(nóng)場到A公司的路程為m千米,設(shè)農(nóng)場從A公司購買x噸銨肥,購買8噸銨肥的總費(fèi)用為y元(總費(fèi)用=購買銨肥費(fèi)用+運(yùn)輸費(fèi)用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場建議總費(fèi)用最低的購買方案.20.(8分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.21.(8分)已知x1﹣1x﹣1=1.求代數(shù)式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.22.(10分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點(diǎn)C處測得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).23.(12分)如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點(diǎn)A,與雙曲線的一個(gè)交點(diǎn)為B(-1,4).求直線與雙曲線的表達(dá)式;過點(diǎn)B作BC⊥x軸于點(diǎn)C,若點(diǎn)P在雙曲線上,且△PAC的面積為4,求點(diǎn)P的坐標(biāo).24.如圖,要利用一面墻(墻長為25米)建羊圈,用100米的圍欄圍成總面積為400平方米的三個(gè)大小相同的矩形羊圈,求羊圈的邊長AB,BC各為多少米?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點(diǎn):1.切線的性質(zhì);3.矩形的性質(zhì).2、A【解析】試題分析:根據(jù)角拋物線頂點(diǎn)式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(diǎn)(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A3、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點(diǎn)睛:本題主要考查全等三角形的判定與性質(zhì),證明△ABF≌△CDE是關(guān)鍵.4、C【解析】

根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點(diǎn)睛】本題考查了平行線性質(zhì)和角平分線定義,關(guān)鍵是求出∠DAC或∠BAC的度數(shù).5、B【解析】

∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B6、C【解析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點(diǎn):相似三角形的判定與性質(zhì).7、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點(diǎn)睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.8、C【解析】

根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點(diǎn)睛】本題主要考查平行線的性質(zhì):兩直線平行,同位角相等.快速解題的關(guān)鍵是牢記平行線的性質(zhì).9、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.10、B【解析】∵①對頂角相等,故此選項(xiàng)正確;②若a>b>0,則<,故此選項(xiàng)正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項(xiàng)錯(cuò)誤;④拋物線y=x2﹣2x與坐標(biāo)軸有2個(gè)不同交點(diǎn),故此選項(xiàng)錯(cuò)誤;⑤邊長相等的多邊形內(nèi)角不一定都相等,故此選項(xiàng)錯(cuò)誤;∴從中任選一個(gè)命題是真命題的概率為:.故選:B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】

根據(jù)同底數(shù)冪乘法性質(zhì)am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點(diǎn)睛】本題考查了同底數(shù)冪乘法計(jì)算,屬于簡單題,熟悉法則是解題關(guān)鍵.12、4【解析】試題分析:根據(jù)BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內(nèi)錯(cuò)角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點(diǎn):等邊三角形的判定與性質(zhì);平行線的性質(zhì).13、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.14、1.【解析】

根據(jù)反比例函數(shù)的性質(zhì)可判斷點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對稱,則S△BOC=S△AOC,再利用反比例函數(shù)k的幾何意義得到S△AOC=3,則易得S△ABC=1.【詳解】∵雙曲線y=6x∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對稱,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案為1.15、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點(diǎn):提公因式法與公式法的綜合運(yùn)用.16、【解析】

利用勾股定理求得圓錐的母線長,則圓錐表面積=底面積+側(cè)面積=π×底面半徑的平方+底面周長×母線長÷1.【詳解】底面半徑為4cm,則底面周長=8πcm,底面面積=16πcm1;由勾股定理得,母線長=,圓錐的側(cè)面面積,∴它的表面積=(16π+4)cm1=cm1,故答案為:.【點(diǎn)睛】本題考查了有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(1)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見解析(2)m=1或m=-1【解析】試題分析:(1)由于m≠0,則計(jì)算判別式的值得到,從而可判斷方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)先利用求根公式得到然后利用有理數(shù)的整除性確定整數(shù)的值.試題解析:(1)證明:∵m≠0,∴方程為一元二次方程,∴此方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)∵∵方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且m是整數(shù),∴m=1或m=?1.18、見解析【解析】

根據(jù)角平分線的性質(zhì)和直角三角形性質(zhì)求∠BAF=∠ACG.進(jìn)一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關(guān)鍵.19、(1)b=;(2)詳見解析.【解析】

(1)分別設(shè)兩段函數(shù)圖象的解析式,代入圖象上點(diǎn)的坐標(biāo)求解即可;(2)先求出農(nóng)場從A、B公司購買銨肥的費(fèi)用,再求出農(nóng)場從A、B公司購買銨肥的運(yùn)輸費(fèi)用,兩者之和即為總費(fèi)用,可以求出總費(fèi)用關(guān)于x的解析式是一次函數(shù),根據(jù)m的取值范圍不同分兩類討論,可得出結(jié)論.【詳解】(1)有圖象可得,函數(shù)圖象分為兩部分,設(shè)第一段函數(shù)圖象為y=k1x,代入點(diǎn)(4,12),即12=k1×4,可得k1=3,設(shè)第二段函數(shù)圖象為y=k2x+c,代入點(diǎn)(4,12)、(8,32)可列出二元一次方程組,解得:k2=5,c=-8,所以函數(shù)解析式為:b=;(2)農(nóng)場從A公司購買銨肥的費(fèi)用為750x元,因?yàn)锽公司有銨肥7噸,1≤x≤3,故農(nóng)場從B公司購買銨肥的重量(8-x)肯定大于5噸,農(nóng)場從B公司購買銨肥的費(fèi)用為700(8-x)元,所以購買銨肥的總費(fèi)用=750x+700(8-x)=50x+5600(0≤x≤3);農(nóng)場從A公司購買銨肥的運(yùn)輸費(fèi)用為3xm元,且滿足1≤x≤3,農(nóng)場從B公司購買銨肥的運(yùn)輸費(fèi)用為[5(8-x)-8]×2m元,所以購買銨肥的總運(yùn)輸費(fèi)用為3xm+[5(8-x)-8]×2m=-7mx+64m元,因此農(nóng)場購買銨肥的總費(fèi)用y=50x+5600-7mx+64m=(50-7m)x+5600+64m(1≤x≤3),分一下兩種情況進(jìn)行討論;①當(dāng)50-7m≥0即m≤時(shí),y隨x的增加而增加,則x=1使得y取得最小值即總費(fèi)用最低,此時(shí)農(nóng)場銨肥的購買方案為:從A公司購買1噸,從B公司購買7噸,②當(dāng)50-7m<0即m>時(shí),y隨x的增加而減少,則x=3使得y取得最小值即總費(fèi)用最低,此時(shí)農(nóng)場銨肥的購買方案為:從A公司購買3噸,從B公司購買5噸.【點(diǎn)睛】本題主要考查了方案比較以及函數(shù)解析式的求解,解本題的要點(diǎn)在于根據(jù)題意列出相關(guān)方程式.20、證明見解析.【解析】

想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.21、2.【解析】

將原式化簡整理,整體代入即可解題.【詳解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【點(diǎn)睛】本題考查了代數(shù)式的化簡求值,屬于簡單題,整體代入是解題關(guān)鍵.22、(1)斜坡CD的高度DE是5米;(2)大樓AB的高度是34米.【解析】試題分析:(1)根據(jù)在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,高為DE,可以求得DE的高度;(2)根據(jù)銳角三角函數(shù)和題目中的數(shù)據(jù)可以求得大樓AB的高度.試題解析:(1)∵在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論