湖北大學(xué)知行學(xué)院《字體設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
湖北大學(xué)知行學(xué)院《字體設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
湖北大學(xué)知行學(xué)院《字體設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
湖北大學(xué)知行學(xué)院《字體設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
湖北大學(xué)知行學(xué)院《字體設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁湖北大學(xué)知行學(xué)院

《字體設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的全景圖像生成任務(wù)中,將多幅局部圖像拼接成一幅全景圖像。假設(shè)要生成一個(gè)城市景觀的全景圖像,以下關(guān)于全景圖像生成方法的描述,哪一項(xiàng)是不正確的?()A.首先需要對局部圖像進(jìn)行特征提取和匹配,找到它們之間的對應(yīng)關(guān)系B.可以使用圖像變形和融合技術(shù)來消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機(jī)參數(shù)的影響,能夠完美拼接任何圖像D.基于深度學(xué)習(xí)的方法能夠自動(dòng)學(xué)習(xí)全景圖像的生成規(guī)律,提高拼接效果2、計(jì)算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是3、在計(jì)算機(jī)視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個(gè)特性使其在這種情況下表現(xiàn)出色?()A.對旋轉(zhuǎn)和尺度變化具有不變性B.計(jì)算速度快,效率高C.特征維度低,易于存儲(chǔ)和處理D.對光照變化不敏感4、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對一張受到嚴(yán)重噪聲污染的圖像進(jìn)行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時(shí)很好地保留圖像的細(xì)節(jié)B.中值濾波對椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會(huì)引入任何新的失真或模糊5、在計(jì)算機(jī)視覺的圖像壓縮任務(wù)中,假設(shè)要在保證圖像質(zhì)量的前提下盡可能減小文件大小。以下關(guān)于壓縮算法的選擇,哪一項(xiàng)是不正確的?()A.選擇基于變換的壓縮算法,如離散余弦變換(DCT)B.采用無損壓縮算法,確保圖像信息完全不丟失C.只考慮壓縮比,不關(guān)心圖像的視覺質(zhì)量D.根據(jù)圖像的特點(diǎn)和應(yīng)用需求選擇合適的壓縮算法6、計(jì)算機(jī)視覺中的行人檢測是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個(gè)擁擠的公共場所中準(zhǔn)確檢測出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復(fù)雜環(huán)境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學(xué)習(xí)的行人檢測C.基于運(yùn)動(dòng)信息的行人檢測D.基于形狀模板的行人檢測7、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設(shè)我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細(xì)節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學(xué)習(xí)的方法C.基于深度學(xué)習(xí)的方法,如SRCNND.基于小波變換的方法8、對于視頻中的異常檢測任務(wù),假設(shè)要在一段監(jiān)控視頻中檢測出異常事件,如闖入、打斗等。以下哪種方法可能更有助于準(zhǔn)確檢測異常?()A.建立正常行為模型,對比檢測異常B.只關(guān)注視頻中的顯著運(yùn)動(dòng)區(qū)域C.隨機(jī)判斷視頻中的幀是否異常D.不進(jìn)行異常檢測,直接忽略異常事件9、計(jì)算機(jī)視覺中的視頻分析需要對連續(xù)的圖像幀進(jìn)行處理和理解。假設(shè)要分析一段監(jiān)控視頻中的人群行為,包括行走方向、聚集和分散等。以下哪種視頻分析技術(shù)在處理這種復(fù)雜的群體行為時(shí)最為有效?()A.幀間差分法B.背景減除法C.光流法結(jié)合軌跡分析D.深度學(xué)習(xí)的行為識(shí)別模型10、計(jì)算機(jī)視覺中的圖像分割任務(wù)旨在將圖像分割成不同的區(qū)域。假設(shè)要對一張風(fēng)景圖片進(jìn)行分割,區(qū)分天空、陸地和水面。以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.基于閾值的分割方法簡單快速,但對于復(fù)雜圖像效果不佳B.區(qū)域生長法從種子點(diǎn)開始,逐步合并相似的區(qū)域C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯(cuò)誤的邊界11、在計(jì)算機(jī)視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關(guān)于特征提取方法的描述,哪一項(xiàng)是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計(jì)算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學(xué)習(xí)中的自動(dòng)特征提取,例如通過卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)到的特征,比手工設(shè)計(jì)的特征更具有代表性和判別力D.特征提取的結(jié)果對后續(xù)的圖像處理任務(wù)影響不大,不同的特征提取方法可以得到相似的處理效果12、計(jì)算機(jī)視覺中的圖像增強(qiáng)技術(shù)可以改善圖像質(zhì)量。假設(shè)要對一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強(qiáng)圖像對比度C.基于深度學(xué)習(xí)的圖像增強(qiáng)方法能夠自適應(yīng)地學(xué)習(xí)到適合的增強(qiáng)策略D.圖像增強(qiáng)不會(huì)改變圖像的原始信息和內(nèi)容13、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是一個(gè)具有挑戰(zhàn)性的任務(wù)。假設(shè)要識(shí)別一段體育比賽視頻中的運(yùn)動(dòng)員動(dòng)作,以下關(guān)于特征選擇的方法,哪一項(xiàng)是不太可行的?()A.提取運(yùn)動(dòng)員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來判斷運(yùn)動(dòng)員的動(dòng)作C.計(jì)算視頻幀之間的光流變化作為動(dòng)作特征D.結(jié)合空間和時(shí)間維度的特征來描述動(dòng)作14、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像檢索任務(wù),例如在海量圖像庫中查找相似的圖像,以下哪種圖像表示方法可能對檢索效果產(chǎn)生重要影響?()A.全局特征B.局部特征C.深度學(xué)習(xí)特征D.以上都是15、圖像分類是計(jì)算機(jī)視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對大量的自然風(fēng)景圖片進(jìn)行分類,包括山脈、森林、海灘等不同類型,同時(shí)圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準(zhǔn)確地對這些圖片進(jìn)行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機(jī)B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)提取特征+深度學(xué)習(xí)分類器D.顏色直方圖特征+樸素貝葉斯16、計(jì)算機(jī)視覺中的醫(yī)學(xué)圖像分析具有重要的臨床應(yīng)用價(jià)值。假設(shè)要從一組X光片中檢測出病變區(qū)域,同時(shí)要區(qū)分不同類型的病變。以下哪種技術(shù)和方法在醫(yī)學(xué)圖像分析中最為常用和有效?()A.形態(tài)學(xué)操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運(yùn)用17、計(jì)算機(jī)視覺在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中的應(yīng)用可以提供更沉浸式的體驗(yàn)。假設(shè)要在VR環(huán)境中實(shí)時(shí)跟蹤用戶的頭部運(yùn)動(dòng)并相應(yīng)地更新場景,以下關(guān)于VR/AR計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運(yùn)動(dòng)跟蹤需求B.計(jì)算機(jī)視覺在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺特征提取和深度學(xué)習(xí)的頭部運(yùn)動(dòng)跟蹤算法可以實(shí)現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計(jì)算機(jī)視覺算法的性能沒有影響18、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時(shí)保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時(shí),提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP19、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別用于分析視頻中的人體動(dòng)作。假設(shè)要識(shí)別一段舞蹈視頻中的動(dòng)作類別。以下關(guān)于動(dòng)作識(shí)別方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以基于時(shí)空特征提取的方法,捕捉動(dòng)作在時(shí)間和空間上的變化B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短時(shí)記憶網(wǎng)絡(luò)(LSTM)適用于動(dòng)作序列的分析C.動(dòng)作識(shí)別只需要關(guān)注人體的關(guān)節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結(jié)合音頻和視頻信息,可以提高動(dòng)作識(shí)別的準(zhǔn)確率20、計(jì)算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個(gè)在復(fù)雜場景中運(yùn)動(dòng)的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測目標(biāo)的運(yùn)動(dòng)軌跡,但對目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計(jì)算復(fù)雜度低,適用于實(shí)時(shí)跟蹤要求高的場景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時(shí)容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性21、假設(shè)要構(gòu)建一個(gè)能夠?qū)Ψb進(jìn)行款式和顏色識(shí)別的計(jì)算機(jī)視覺系統(tǒng),用于時(shí)尚推薦和庫存管理。在處理服裝圖像時(shí),由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設(shè)計(jì)的特征B.基于深度學(xué)習(xí)的自動(dòng)特征C.顏色直方圖D.以上都是22、計(jì)算機(jī)視覺中的圖像語義分割需要為圖像中的每個(gè)像素分配類別標(biāo)簽。假設(shè)要對一張城市街景圖像進(jìn)行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場景時(shí)能夠提供更精細(xì)的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab23、目標(biāo)檢測是計(jì)算機(jī)視覺中的重要任務(wù)之一,旨在定位和識(shí)別圖像中的多個(gè)目標(biāo)。假設(shè)我們要在城市街道的圖像中檢測行人和車輛。對于處理這種復(fù)雜場景的目標(biāo)檢測任務(wù),以下哪種技術(shù)通常能提供更準(zhǔn)確的檢測結(jié)果?()A.基于滑動(dòng)窗口的傳統(tǒng)目標(biāo)檢測方法B.基于區(qū)域提議的目標(biāo)檢測算法,如R-CNN系列C.基于回歸的一階段目標(biāo)檢測算法,如YOLO系列D.基于聚類的目標(biāo)檢測方法24、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計(jì)的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動(dòng)學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)到圖像的多層次特征,具有很強(qiáng)的表達(dá)能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標(biāo)檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要25、計(jì)算機(jī)視覺在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項(xiàng)是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識(shí)不足,導(dǎo)致標(biāo)注錯(cuò)誤D.數(shù)據(jù)量過大,標(biāo)注工作耗時(shí)費(fèi)力26、在計(jì)算機(jī)視覺的發(fā)展中,模型的可解釋性是一個(gè)重要的研究方向。以下關(guān)于模型可解釋性的描述,不準(zhǔn)確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計(jì)算機(jī)視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)27、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的示例圖像從大規(guī)模圖像數(shù)據(jù)庫中找到相似的圖像。假設(shè)要構(gòu)建一個(gè)高效的圖像搜索引擎,能夠快速準(zhǔn)確地返回相關(guān)圖像。以下哪種圖像檢索方法在處理大規(guī)模數(shù)據(jù)時(shí)性能更優(yōu)?()A.基于內(nèi)容的圖像檢索B.基于文本標(biāo)注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學(xué)習(xí)特征的圖像檢索28、計(jì)算機(jī)視覺中的全景圖像拼接是將多個(gè)視角的圖像組合成一個(gè)全景圖像。假設(shè)我們有一組用普通相機(jī)拍攝的場景照片,要拼接成一個(gè)無縫的全景圖,以下哪個(gè)步驟對于拼接的質(zhì)量影響最大?()A.特征點(diǎn)提取和匹配B.圖像融合和過渡處理C.相機(jī)參數(shù)估計(jì)和校正D.圖像的裁剪和縮放29、計(jì)算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。假設(shè)要檢測生產(chǎn)線上產(chǎn)品的表面缺陷,以下關(guān)于工業(yè)檢測中的計(jì)算機(jī)視覺技術(shù)的描述,正確的是:()A.傳統(tǒng)的機(jī)器視覺方法在檢測復(fù)雜的表面缺陷時(shí)比深度學(xué)習(xí)方法更可靠B.深度學(xué)習(xí)模型需要大量的有缺陷和無缺陷樣本進(jìn)行訓(xùn)練,才能準(zhǔn)確檢測出各種缺陷C.工業(yè)檢測中的計(jì)算機(jī)視覺系統(tǒng)不需要考慮實(shí)時(shí)性和準(zhǔn)確性的平衡D.產(chǎn)品的顏色和材質(zhì)對表面缺陷檢測的結(jié)果沒有影響30、對于圖像的紋理分析任務(wù),假設(shè)要描述和區(qū)分不同類型的紋理,例如木紋和石紋。以下哪種方法可能更有助于準(zhǔn)確分析紋理特征?()A.基于統(tǒng)計(jì)的方法,計(jì)算紋理的灰度共生矩陣B.基于模型的方法,如馬爾可夫隨機(jī)場C.僅通過肉眼觀察和主觀描述紋理D.不進(jìn)行任何紋理分析,直接忽略紋理信息二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)開發(fā)一個(gè)可以識(shí)別不同種類鯨豚的計(jì)算機(jī)視覺應(yīng)用。2、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測物流倉庫中包裹的標(biāo)簽信息。3、(本題5分)利用目標(biāo)檢測算法,在衛(wèi)星地圖中檢測湖泊。4、(本題5分)運(yùn)用圖像分類技術(shù),對不同種類的折扇進(jìn)行分類。5、(本題5分)對體育賽事的視頻進(jìn)行慢動(dòng)作分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論