版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省萊蕪市重點(diǎn)中學(xué)2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i2.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.3.已知角的終邊與單位圓交于點(diǎn),則等于()A. B. C. D.4.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米5.給甲、乙、丙、丁四人安排泥工、木工、油漆三項(xiàng)工作,每項(xiàng)工作至少一人,每人做且僅做一項(xiàng)工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種6.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件7.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.78.“角谷猜想”的內(nèi)容是:對于任意一個(gè)大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.99.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個(gè)數(shù)為()A.1 B.2 C.3 D.410.已知雙曲線()的漸近線方程為,則()A. B. C. D.11.設(shè)等差數(shù)列的前n項(xiàng)和為,且,,則()A.9 B.12 C. D.12.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則a的取值范圍是______.14.設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時(shí),為的幾何平均數(shù).(只需寫出一個(gè)符合要求的函數(shù)即可)15.已知向量,,,則_________.16.已知非零向量的夾角為,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項(xiàng)公式;若數(shù)列滿足,求的前項(xiàng)和.18.(12分)在極坐標(biāo)系中,曲線的極坐標(biāo)方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設(shè)曲線與曲線交于,兩點(diǎn),求.19.(12分)在平面直角坐標(biāo)系中,,,且滿足(1)求點(diǎn)的軌跡的方程;(2)過,作直線交軌跡于,兩點(diǎn),若的面積是面積的2倍,求直線的方程.20.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.21.(12分)數(shù)列滿足,,其前n項(xiàng)和為,數(shù)列的前n項(xiàng)積為.(1)求和數(shù)列的通項(xiàng)公式;(2)設(shè),求的前n項(xiàng)和,并證明:對任意的正整數(shù)m、k,均有.22.(10分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點(diǎn),以為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點(diǎn)睛】的共軛復(fù)數(shù)為2、A【解析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.3、B【解析】
先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點(diǎn),,故選:B【點(diǎn)睛】考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.4、B【解析】
根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.5、C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項(xiàng)工作,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項(xiàng)工作,有種情況,此時(shí)有種情況,則有種不同的安排方法;故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】
根據(jù)冪函數(shù)定義,求得的值,結(jié)合充分條件與必要條件的概念即可判斷.【詳解】∵當(dāng)函數(shù)為冪函數(shù)時(shí),,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.8、B【解析】
模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時(shí):,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時(shí)可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.9、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項(xiàng).【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時(shí),,當(dāng)即時(shí),取等號(hào),當(dāng)時(shí),函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個(gè)數(shù)為1個(gè).故選:A.【點(diǎn)睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運(yùn)用基本不等式時(shí),滿足所需的條件,屬于基礎(chǔ)題.10、A【解析】
根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11、A【解析】
由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查學(xué)生運(yùn)算求解能力,是一道基礎(chǔ)題.12、D【解析】
設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
函數(shù)等價(jià)為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價(jià)為,且時(shí),遞增,時(shí),遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的單調(diào)性的判斷和運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.14、【解析】
由定義可知三點(diǎn)共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點(diǎn)睛】本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.15、2【解析】
由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.16、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點(diǎn)睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、,;.【解析】
由,公差,有,,成等比數(shù)列,所以,解得.進(jìn)而求出數(shù)列,的通項(xiàng)公式;當(dāng)時(shí),由,所以,當(dāng)時(shí),由,,可得,進(jìn)而求出前項(xiàng)和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項(xiàng)公式.?dāng)?shù)列的公比,其通項(xiàng)公式.當(dāng)時(shí),由,所以.當(dāng)時(shí),由,,兩式相減得,所以.故所以的前項(xiàng)和,.又時(shí),,也符合上式,故.【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項(xiàng)公式,前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,方程思想,分類討論思想,應(yīng)用意識(shí),屬于中檔題.18、(1);(2)【解析】
(1)利用互化公式,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,得出曲線與極軸所在直線圍成的圖形是一個(gè)半徑為1的圓周及一個(gè)兩直角邊分別為1與的直角三角形,即可求出面積;(2)聯(lián)立方程組,分別求出和的坐標(biāo),即可求出.【詳解】解:(1)由于的極坐標(biāo)方程為,根據(jù)互化公式得,曲線的直角坐標(biāo)方程為:當(dāng)時(shí),,當(dāng)時(shí),,則曲線與極軸所在直線圍成的圖形,是一個(gè)半徑為1的圓周及一個(gè)兩直角邊分別為1與的直角三角形,∴圍成圖形的面積.(2)由得,其直角坐標(biāo)為,化直角坐標(biāo)方程為,化直角坐標(biāo)方程為,∴,∴.【點(diǎn)睛】本題考查利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,以及聯(lián)立方程組求交點(diǎn)坐標(biāo),考查計(jì)算能力.19、(1).(2)的方程為.【解析】
(1)令,則,由此能求出點(diǎn)C的軌跡方程.(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達(dá)定理,三角形面積公式,結(jié)合已知條件能求出直線的方程?!驹斀狻拷猓海?)因?yàn)椋粗本€的斜率分別為且,設(shè)點(diǎn),則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為?!军c(diǎn)睛】本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關(guān)系,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題。20、(1),(2)【解析】
(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯(cuò)位相減求和即可.【詳解】解:(1)依題意,,設(shè)數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解以及錯(cuò)位相減求和等.屬于中檔題.21、(1),;(2),證明見解析【解析】
(1)利用已知條件建立等量關(guān)系求出數(shù)列的通項(xiàng)公式.(2)利用裂項(xiàng)相消法求出數(shù)列的和,進(jìn)一步利用放縮法求出結(jié)論.【詳解】(1),,得是公比為的等比數(shù)列,,,當(dāng)時(shí),數(shù)列的前項(xiàng)積為,則,兩式相除得,得,又得,;(2),故.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,數(shù)列的前項(xiàng)和的應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.22、(1).(2).【解析】
(1)先根據(jù)空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個(gè)法向量和平面BCC1的一個(gè)法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答(1)因?yàn)锳B=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東低碳建筑合同
- 2025版建筑勞務(wù)派遣企業(yè)勞動(dòng)關(guān)系協(xié)調(diào)合同范本2篇
- 二零二五年度個(gè)人房產(chǎn)交易居間服務(wù)合同2篇
- 二零二五年度城市綜合體消防安全評估合同2篇
- 二零二五年度地下車庫停車場車位使用權(quán)轉(zhuǎn)讓協(xié)議6篇
- 二零二五年度☆智慧城市建設(shè)項(xiàng)目規(guī)劃設(shè)計(jì)合同2篇
- 2025版凈化車間工程噪聲控制與治理合同3篇
- 生態(tài)畜禽水產(chǎn)養(yǎng)殖加工項(xiàng)目可行性研究報(bào)告
- 機(jī)場改造環(huán)境影響評估與社會(huì)影響分析
- 港口改造項(xiàng)目社會(huì)效益分析
- 新入職員工年終工作總結(jié)課件
- 中華傳統(tǒng)文化之文學(xué)瑰寶學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 靜脈導(dǎo)管維護(hù)
- 2023年外交學(xué)院招聘筆試備考試題及答案解析
- 年度先進(jìn)員工選票標(biāo)準(zhǔn)格式
- MA5680T開局配置
- (完整word版)澳大利亞簽證54表(家庭構(gòu)成)
- 螺桿式風(fēng)冷冷水(熱泵)機(jī)組電路圖
- CFG樁施工記錄表范本
- 《錄音技術(shù)與藝術(shù)》課程教學(xué)大綱(新版)(共11頁)
- 二、菲涅耳公式表示反射波、折射波與入射波的振幅和位相關(guān)
評論
0/150
提交評論