




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
數(shù)學試卷第頁(共頁)2023年河南南陽二模·數(shù)學全卷總分:120分考試時間:100分鐘一、選擇題:(每小題3分,共30分.)(下列各小題只有一個答案是正確的.)1.計算:12×(﹣A.1 B.﹣1 C.4 D.﹣41.B2.剪紙文化是中國最古老的民間藝術之一,距今已經(jīng)有三千多年的歷史,剪紙文化起源于人民的社會生活,蘊含了豐富的文化歷史信息,表達了廣大民眾的社會認識,生活理想和審美情趣.下列剪紙圖案中,既是軸對稱圖形又是中心對稱圖形的是()2.D【解析】A.是軸對稱圖形,不是中心對稱圖形,不符合題意;B.是軸對稱圖形,不是中心對稱圖形,不符合題意;C.既不是中心對稱圖形,也不是軸對稱圖形,不符合題意;D.原圖既是中心對稱圖形,又是軸對稱圖形,符合題意.3.下列值最小的是()A.(?2)2
B.C.(﹣2)0 D.(3.B【解析】由題意可得,(?2)2=2,2?1=12,(﹣2)4.下列選項的括號內(nèi)填入a2,等式成立的是()A.a(chǎn)2+()=a5 B.a(chǎn)8÷()=a4C.()3=a8 D.a(chǎn)3?()=a54.D【解析】A.a2+a2=2a2,原選項計算錯誤,不符合題意;B.a8÷a2=a6,原選項計算錯誤,不符合題意;C.(a2)3=a6,原選項計算錯誤,不符合題意;D.a3?a2=a5,原選項計算正確,符合題意.5.如圖,水面AB與水杯下沿CD平行,光線EF從水中射向空氣時發(fā)生折射,光線變成FH,點G在射線EF上.已知∠HFB=20°,∠FED=45°,則∠GFH的度數(shù)是()A.65° B.60° C.45° D.25°5.D【解析】∵AB∥CD,∴∠GFB=∠FED=45°,∴∠GFH=∠GFB﹣∠HFB=45°﹣20°=25°.6.2022年11月,中國礦業(yè)大學科研團隊發(fā)現(xiàn)外徑約55納米的天然洋蔥狀富勒烯,即“碳洋蔥”.這是目前地球上發(fā)現(xiàn)的最大的天然“碳洋蔥”,已知1納米=10﹣9米,那么55納米用科學記數(shù)法表示為()A.5.5×10﹣10米 B.5.5×10﹣8米C.10×5.5﹣8米 D.10×5.5﹣10米6.B【解析】∵1納米=10﹣9米,∴55納米=55×0.000000001米=5.5×10﹣8米.7.勞動教育是學校貫徹“五育并舉”的重要舉措,某校倡議學生在家做一些力所能及的家務勞動,李老師為了解學生每周參加家務勞動的時間,隨機調(diào)查了本班20名學生,收集到如下數(shù)據(jù):時間/h65432人數(shù)/名26462關于家務勞動時間的描述正確的是()A.眾數(shù)是6 B.平均數(shù)是4 C.中位數(shù)是3 D.方差是17.B【解析】A.每周參加家務勞動的時間為5h和3h出現(xiàn)的次數(shù)最多,故眾數(shù)是5和3,故本選項不符合題意;B.平均數(shù)是
6×2+5×6+4×4+3×6+2×220=4,故本選項符合題意;C.中位數(shù)是
4+42=4,故本選項不符合題意;D.方差為
120×[2×(6﹣4)2+6×(5﹣4)2+4×(48.一次實踐探究課上,老師讓同學們用四張全等的含30°角的直角三角形紙片拼成一個四邊形,下列拼成的四邊形中,不是菱形的是()8.D【解析】∵用四張全等的含30°角的直角三角形紙片拼成一個四邊形,∴可設直角三角形的三邊為a,3a,2a.A.四邊形的四條邊長都為2a,故四邊形為菱形,不符合題意;B.四邊形的四條邊為2a,故四邊形為菱形,不符合題意;C.四邊形的四邊長為2a,故四邊形是菱形,不符合題意;D.四邊形的四條邊長為3a,2a,3a,2a,故四邊形不是菱形,符合題意.9.南陽,古稱“宛”,是楚漢文化的重要發(fā)祥地,三顧茅廬、召父杜母、羊續(xù)懸魚、牛郎織女等典故或傳說皆發(fā)源于此.現(xiàn)將分別印有“三顧茅廬”“召父杜母”“羊續(xù)懸魚”“牛郎織女”圖案的卡片(卡片形狀、大小、質(zhì)地均相同)各1張放入不透明的甲盒中,再將與甲盒中完全一樣的4張卡片放入不透明的乙盒中.小明從甲、乙兩個盒中各隨機抽取1張卡片,則抽到的卡片恰好是1張“三顧茅廬”和1張“羊續(xù)懸魚”的概率是()A.18
B.1C.13
D.9.A【解析】將三顧茅廬、召父杜母、羊續(xù)懸魚、牛郎織女四個典故分別記作1,2,3,4,列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由表知,共有16種等可能結(jié)果,其中抽到的卡片恰好是1張“三顧茅廬”和1張“羊續(xù)懸魚”的結(jié)果有2種,∴抽到的卡片恰好是1張“三顧茅廬”和1張“羊續(xù)懸魚”的概率為
21610.如圖①,已知扇形AOB,點P從點O出發(fā),沿O﹣A﹣B﹣O以1cm/s的速度運動,設點P的運動時間為xs,OP=y(tǒng)cm,y隨x變化的圖象如圖②所示,則扇形AOB的面積為()A.3πcm2 B.πcm2C.2πcm2 D.1.5πcm210.D【解析】由圖象可知,點P從點B運動到點O的時間為π+6﹣(π+3)=3s,∴OB=3cm,即扇形的半徑為3cm,由圖象可知,點P從點O運動到點B的時間為π+3,∴弧長為πcm,設扇形的圓心角為n,根據(jù)弧長公式可得,n×3π180=π,解得n=60°,∴由扇形的面積公式可得,S扇形AOB二、填空題11.一個二次二項式分解后其中的一個因式為x﹣3,請寫出一個滿足條件的二次二項式
.11.x2﹣9(答案不唯一)【解析】∵(x﹣3)(x+3)=x2﹣9,∵x2﹣9是二次二項式,∴x2﹣9符合題意.12.小穎將幾盒粉筆整齊地摞在講桌上,同學們發(fā)現(xiàn)從正面、左面、上面三個方向看到的粉筆形狀相同(如圖所示),那么這摞粉筆一共有
盒.12.4【解析】由俯視圖可得最底層有3盒,由正視圖和左視圖可得第二層有1盒,共有4盒.13.某??萍夹〗M進行野外考查,利用鋪墊木板的方式通過了一片爛泥濕地,這是因為人和木板對濕地的壓力F一定時,人和木板對地面的壓強
P(Pa)與木板面積S(m2)存在函數(shù)關系P=FS(如圖所示)若木板面積為0.2m2,則壓強為13.3000【解析】由已知反比例函數(shù)解析式為
P=FS,將(0.5,1200)代入,得1200=F0.5,解得F=600,∴
P=600S,當S=0.2m2時,
P=6000.2,解得
P=14.如圖,正方形ABCD的中心與坐標原點O重合,將頂點D(1,0)繞點A(0,1)逆時針旋轉(zhuǎn)90°得點D1,再將D1繞點B逆時針旋轉(zhuǎn)90°得點D2,再將D2繞點C逆時針旋轉(zhuǎn)90°得點D3,再將D3繞點D逆時針旋轉(zhuǎn)90°得點D4,再將D4繞點A逆時針旋轉(zhuǎn)90°得點D5…以此類推,則點D2023的坐標是
.14.(﹣2023,﹣2024)【解析】如圖,過點D1作D1E⊥y軸于點E,過點D2作D2F⊥x軸于點F,過點D3作D3G⊥y軸于點G,過點D4作D4H⊥x軸于點H,過點D5作D5K⊥y軸于點K,∵正方形ABCD的中心與坐標原點O重合,D(1,0),∴OA=OB=OC=OD=1,AB=BC=CD=AD
=2,∠BAO=∠CBO=∠DCO=∠ADO=45°,∴A(0,1),B(﹣1,0),C(0,﹣1).∵將頂點D(1,0)繞點A(0,1)逆時針旋轉(zhuǎn)90°得點D1,∴∠D1AE=45°,∠AED1=90°,AD1=AD
=2,∴AE=AD1?cos∠D1AE
=2cos45°=1,D1E=AD1?sin∠D1AE
=2sin45°=1,∴OE=OA+AE=1+1=2,BD1=AB+AD1
=2+2=2
2,∴D1(1,2),∵再將D1繞點B逆時針旋轉(zhuǎn)90°得點D2,∴∠D2BF=45°,∠D2FB=90°,BD2=BD1=2
2,∴D2F=BD2sin∠D2BF=2
2sin45°=2,BF=BD2cos∠D2BF=2
2cos45°=2,∴OF=OB+BF=1+2=3,∴D2(﹣3,2),再將D2繞點C逆時針旋轉(zhuǎn)90°得點D3,再將D3繞點D逆時針旋轉(zhuǎn)90°得點D4,再將D4繞點A逆時針旋轉(zhuǎn)90°得點D5……同理可得D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),…,觀察發(fā)現(xiàn),每四個點一個循環(huán),D4n(4n+1,﹣4n),D4n+1(4n+1,4n+2),D4n+2(﹣4n﹣3,4n+2),D4n+3(﹣4n﹣3,﹣4n﹣4),∵2023=4×505+3,∴D202315.如圖,在Rt△ABC中,∠C=90°,AC=BC=2,M為邊BC的中點,點D為邊BC上一動點,連接AD,將邊AC沿直線AD翻折得到線段AE,連接ME,則EM長度的取值范圍為
.15.5?2≤EM【解析】如圖,連接AM.在Rt△ABC中,∠C=90,AC=BC=2,∵M為邊BC的中點,∴BM=MC=12BC=1,∴AM=AC2+CM2=22+12=5,由對稱的性質(zhì)可知,AE=AC=2.∵EM≥AM﹣AE=5?2,∴EM的最小值為5?2,當點D與B三、解答題16.解方程和不等式組:(1)2x(2)3+16.解:(1)去分母得,2﹣x+3=﹣1,移項、合并同類項得,x=6,經(jīng)檢驗,x=6是原方程的解;(2)由①得,x>﹣2,由②得,x≤5,∴原不等式組的解集為﹣2<x≤5.17.某公司要招聘一名職員,根據(jù)實際需要,從學歷、經(jīng)驗、能力、態(tài)度四個方面對甲、乙、丙三名應聘者進行了測試,滿分均為10分,綜合各項指標成績高者將被錄用.測試成績?nèi)缦旅鏃l形統(tǒng)計圖所示:(1)若按四項成績平均分最高者被錄用,則甲、乙、丙三人中
將被錄用;(2)若這家公司比較看重員工的學歷和態(tài)度,并且把學歷、經(jīng)驗、能力、態(tài)度四個方面按2∶1∶1∶2的比例計算三人的綜合得分,請通過計算說明誰將被錄用?(3)如果你是這家公司的招聘領導,你將按什么比例計算三人的綜合得分?說明理由.(要求:你的方案不能和前兩問相同)17.解:(1)丙;【解法提示】甲四項成績的平均分為
9+8+7+54=7.25(分),乙四項成績的平均分為
8+6+8+74=7.25(分),丙四項成績(2)甲的綜合得分為:9×2乙的綜合得分為:8×2丙的綜合得分為:8×2∵7.33>7.17,∴乙將被錄用;(3)把學歷、經(jīng)驗、能力、態(tài)度四個方面按2∶2∶3∶3的比例計算三人的綜合得分,∵工作能力和工作態(tài)度更重要(答案不唯一,合理即可).18.“兒童散學歸來早,忙趁東風放紙鳶”.隨著春季的來臨,放風箏已成為孩子們的最愛.周末小冬和爸爸一起去公園放風箏,如圖,當小冬站在G處時,風箏在空中的位置為點B,仰角為53°,小冬站在G處繼續(xù)放線,當再放2m長的線時,風箏飛到點C處,此時點B、C離地面MN的高度恰好相等,C點的仰角為44°.若小冬的眼睛與地面MN的距離AG為1.6m,請計算風箏離地面MN的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):sin44°≈0.7,sin53°≈0.8,cos53°≈0.6)18.解:如圖,過點A作AD∥MN,分別過點B、C作BE⊥AD于點E,CF⊥AD于點F.由題意得∠BAE=53°,∠CAF=44°,BE=CF,AC=(AB+2)m,設AB=xm,則AC=(x+2)m,在Rt△ABE中,sin∠∴BE≈0.8x
m;在Rt△ACF中,
sin∠∴CF≈0.7(x+2)m,∴0.8x=0.7(x+2),解得x=14,∴BE≈0.8x=11.2(m),∴MN=11.2+1.6≈13(m).答:風箏離地面MN的高度約為13m.19.【閱讀與思考】如表是小亮同學在數(shù)學雜志上看到的小片段,請仔細閱讀并完成相應的任務.一元二次方程根與系數(shù)的關系通過學習用公式法解一元二次方程可以發(fā)現(xiàn),一元二次方程的根完全由它的系數(shù)確定,求根公式就是根與系數(shù)關系的一種形式.除此以外,一元二次方程的根與系數(shù)之間還有一些其他形式的關系.從因式分解的角度思考這個問題,若把一元二次方程ax2+bx+c=0(a≠0)的兩個實數(shù)根分別記為x1,x2,則有恒等式ax2+bx+c=a(x﹣x1)(x﹣x2),即ax2+bx+c=ax2﹣a(x1+x2)x+ax1x2.比較兩邊系數(shù)可得:x1+x2=
,x1x2=
.任務:(1)填空:x1+x2=
,x1x2=
;(2)小亮同學利用求根公式進行推理,同樣能夠得出一元二次方程兩根之和、兩根之積與系數(shù)之間的關系.下面是小亮同學的部分推理過程,請完成填空,并將推理和運算過程補充完整.解:對于一元二次方程ax2+bx+c=0(a≠0),當b2﹣4ac≥0時,有兩個實數(shù)根x1=
,x2=
;…(3)已知關于x的方程2x2+3mx+m2=0的兩根之和與兩根之積的和等于2,直接寫出m的值.19.解:(1)?ba,【解法提示】根據(jù)題意得,b
=-a(
x1+x2),c
=a
x1x2,∴x1+x2=?(2)
?b?b2【解法提示】對于一元二次方程ax2+bx+c=0(a≠0),當b2﹣4ac≥0時,有兩個實數(shù)根x1
=?b?b2?4ac2a,x2
=?b+b2?4ac(3)﹣1或4.【解法提示】∵a=2,b=3m,c=m2,∴方程2x2+3mx+m2=0的兩根之和為?ba=?3∵兩根之和與兩根之積的和等于2,∴?3m2+m22=2,解得m=20.如圖①,中國古代的馬車已經(jīng)涉及很復雜的機械設計(相對當時的生產(chǎn)力),包含大量零部件和工藝,所彰顯的智慧讓人拜服.如圖②是馬車的側(cè)面示意圖,AB為車輪⊙O的直徑,過圓心O的車架AC一端點C著地時,地面CD與車輪⊙O相切于點D,連接AD,BD.(1)徽徽猜想∠C+2∠BDC=90°,徽徽的猜想正確嗎?請說明理由;(2)若BDAD=63,BC=2米,求車輪20.解:(1)徽徽的猜想正確,理由如下:如圖,連接OD,∵CD與⊙O相切,∴OD⊥CD,∴∠C+∠DOC=90°,∠ODB+∠BDC=90°,∵OB=OD,∴∠ODB=∠OBD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠OBD=90°∴∠A=∠BDC,由圓周角定理得,∠DOC=2∠A,∴∠DOC=2∠BDC,∴∠C+2∠BDC=90°;(2)∵∠BDC=∠A,∠C=∠C,BC=2,∴△CBD∽△CDA,∴
BCDC=解得DC
=6,AB=1答:車輪的直徑AB的長為1米.21.為落實“雙減”政策,豐富課后服務的內(nèi)容,某學校計劃到甲、乙兩個體育專賣店購買一批新的體育用品,兩個商店的優(yōu)惠活動如下:甲:所有商品按原價8.5折出售;乙:一次購買商品總額不超過300元的按原價付費,超過300元的部分打7折.設需要購買體育用品的原價總額為x元,去甲商店購買實付y甲元,去乙商店購買實付y乙元,其函數(shù)圖象如(1)分別求y甲,y乙關于(2)兩圖象交于點A,求點A坐標;(3)請根據(jù)函數(shù)圖象,直接寫出選擇去哪個體育專賣店購買體育用品更合算.21.解:(1)由題意可得,y甲=0.85x當0≤x≤300時,y乙=x當x>300時,y乙=300+(x?300)×0.7=0.7x+90則y乙
=(2)令0.85x=0.7x+90,解得x=600,將x=600代入0.85x得,0.85×600=510,即點A的坐標為(600,510);(3)由圖象可得,當x<600時,去甲體育專賣店購買體育用品更合算;當x=600時,兩家體育專賣店購買體育用品一樣合算;當x>600時,去乙體育專賣店購買體育用品更合算.22.綜合與實踐數(shù)學綜合實踐課上,同學們以“等腰三角形的旋轉(zhuǎn)”為主題,開展如下探究活動:操作探究(1)如圖①,△ABC為等邊三角形,將△ABC繞點A旋轉(zhuǎn)180°,得到△ADE,連接BE,則∠EBC=
°.若F是BE的中點,連接AF,則AF與DE的數(shù)量關系是
;遷移探究(2)如圖②,將(1)中的△ABC繞點A逆時針旋轉(zhuǎn)30°,得到△ADE,其他條件不變,求出此時∠EBC的度數(shù)及AF與DE的數(shù)量關系;拓展應用(3)如圖③,在Rt△ABC中,AB=AC=2,∠BAC=90°,將△ABC繞點A旋轉(zhuǎn),得到△ADE,連接BE,F(xiàn)是BE的中點,連接AF.在旋轉(zhuǎn)過程中,當∠EBC=15°時,直接寫出線段AF的長.22.解:(1)90,AF=12【解法提示】∵將等邊△ABC繞點A旋轉(zhuǎn)180°,得到△ADE,∴B,A,D共線,E,A,C共線,∠EAD=∠BAC=60°=∠ABC,AE=AD=AB,∴∠EAD=∠AEB+∠ABE,∴∠AEB=∠ABE=30°,∴∠EBC=∠ABE+∠ABC=90°,∵AB=AD,F(xiàn)是BE的中點,∴AF是△BDE的中位線,∴AF
=1(2)∵等邊三角形ABC繞點A逆時針旋轉(zhuǎn)30°,得到△ADE,∴AB=AD=AE,∠CAE=30°,∴∠BAE=∠BAC+∠CAE=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,∴∠EBC=∠ABC
?∠ABE=60°
?45°=15°;∵F是BE的中點,∴∠AFB=90°,∴△AFB是等腰直角三角形,∴AF
=22∵AB=BC=DE,∴AF
=22(3)1或3.【解法提示】當E在B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃圖書的業(yè)務智能分析考核試卷
- 現(xiàn)代流行音樂演唱技巧考核試卷
- 裝配工具維保合同
- 智能家電控制系統(tǒng)考核試卷
- 絹紡廠的生產(chǎn)質(zhì)量控制與標準化考核試卷
- 水產(chǎn)品加工設備智能化改造與投資回報分析考核試卷
- 真空電子器件的分子束外延技術考核試卷
- 煤炭洗選技術與環(huán)保效率考核試卷
- 電子專業(yè)音頻接口考核試卷
- 絕緣材料老化與壽命評估考核試卷
- 一例盆腔臟器脫垂全盆底重建術患者的護理
- 快手賬號轉(zhuǎn)讓合同范例
- 10kV電力電纜(銅芯)技術規(guī)范書
- 高空作業(yè)車專項施工方案全套資料
- YY/T 0314-2021一次性使用人體靜脈血樣采集容器
- 2022年江蘇鳳凰出版?zhèn)髅郊瘓F有限公司招聘筆試題庫及答案解析
- 年產(chǎn)11萬噸聚丙烯合成工藝設計
- 幼兒園教學課件《神奇的色彩女王 》課件
- 信息不對稱論文
- 話劇《林黛玉進賈府》
- 妊娠期高血壓綜合征-ppt課件
評論
0/150
提交評論