




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆湖北省襄陽市重點中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.2.已知,,則等于().A. B. C. D.3.已知復(fù)數(shù),則的虛部是()A. B. C. D.14.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標(biāo)原點),則雙曲線的離心率為()A. B. C. D.5.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1476.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值7.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.8.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側(cè)面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.9.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.10.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行11.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.112.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和且,設(shè),則的值等于_______________.14.函數(shù)的單調(diào)增區(qū)間為__________.15.已知集合,,則_____________.16.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.18.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大小(2)已知,設(shè)點是外一點,且,求平面四邊形面積的最大值.19.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標(biāo)出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.20.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標(biāo)方程與點的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(異于原點),求的面積.21.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.22.(10分)已知數(shù)列中,,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.2、B【解析】
由已知條件利用誘導(dǎo)公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.3、C【解析】
化簡復(fù)數(shù),分子分母同時乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復(fù)數(shù)的乘法、除法運算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.4、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).5、B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題6、C【解析】
采用逐一驗證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關(guān)系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.7、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.8、D【解析】
建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點,可得∴焦點為,即焦點為中點,設(shè)焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點間的距離等基礎(chǔ)知識;考查運算求解能力,空間想象能力,推理論證能力,應(yīng)用意識.9、A【解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標(biāo)表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、常考題型.10、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.11、C【解析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.12、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當(dāng)時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
根據(jù)題意,當(dāng)時,,可得,進(jìn)而得數(shù)列為等比數(shù)列,再計算可得,進(jìn)而可得結(jié)論.【詳解】由題意,當(dāng)時,,又,解得,當(dāng)時,由,所以,,即,故數(shù)列是以為首項,為公比的等比數(shù)列,故,又,,所以,.故答案為:.【點睛】本題考查了數(shù)列遞推關(guān)系、函數(shù)求值,考查了推理能力與計算能力,計算得是解決本題的關(guān)鍵,屬于中檔題.14、【解析】
先求出導(dǎo)數(shù),再在定義域上考慮導(dǎo)數(shù)的符號為正時對應(yīng)的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,注意先考慮函數(shù)的定義域,再考慮導(dǎo)數(shù)在定義域上的符號,本題屬于基礎(chǔ)題.15、【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎(chǔ)題.16、5【解析】
△PMF的周長最小,即求最小,過做拋物線準(zhǔn)線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準(zhǔn)線方程為y=﹣2.過作準(zhǔn)線的垂線,垂足為,則有,當(dāng)且僅當(dāng)三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應(yīng)用,考查數(shù)形結(jié)合與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)取的中點,連接,易得,進(jìn)而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點,中點,連接,易證平面,平面,從而可知兩兩垂直,以點為坐標(biāo)原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系,進(jìn)而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點,連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點,中點,連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點為坐標(biāo)原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.由,可得,在等腰梯形中,,易知,.則,,設(shè)平面的法向量為,則,取,得.設(shè)平面的法向量為,則,取,得.因為,,,所以,所以平面與平面所成的二面角的正弦值為.【點睛】本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.18、(1)(2)【解析】
(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質(zhì)求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,所以當(dāng)時有最大值【點睛】本題考查同角三角函數(shù)的基本關(guān)系,三角恒等變換公式的應(yīng)用,三角形面積公式的應(yīng)用,以及正弦函數(shù)的性質(zhì),屬于中檔題.19、(1)見解析(2).【解析】
(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標(biāo)系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.20、(1)極坐標(biāo)方程為,點的極坐標(biāo)為(2)【解析】
(1)利用極坐標(biāo)方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點的極坐標(biāo),利用計算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.(2)由(1),得點的極坐標(biāo)為,由直線過原點且傾斜角為,知點的極坐標(biāo)為,.【點睛】本題考查極坐標(biāo)方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學(xué)生的運算能力,是一道基礎(chǔ)題.21、(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據(jù)條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鋼管腳手架租賃及建筑信息化管理合作協(xié)議
- 礦區(qū)征地合同范本
- 2025至2031年中國防護(hù)安全鞋行業(yè)投資前景及策略咨詢研究報告
- 2024年度貴州省國家保安員資格考試真題練習(xí)試卷B卷附答案
- 2024年度貴州省國家保安員資格考試模考預(yù)測題庫(奪冠系列)
- 黃山2025年安徽黃山歙縣人民醫(yī)院引進(jìn)醫(yī)療衛(wèi)生人才6人筆試歷年參考題庫附帶答案詳解
- 門面互換合同范本
- 雙重信息不對稱下快遞包裝回收激勵策略研究
- 超臨界水氧化技術(shù)制備Cu-Cr2O3復(fù)合粉體及其復(fù)合材料組織性能研究
- 大數(shù)據(jù)發(fā)展對企業(yè)出口技術(shù)復(fù)雜度的影響研究
- 2023年新改版教科版五年級下冊科學(xué)全冊教案(附知識點)
- 固定式塔式起重機(jī)基礎(chǔ)設(shè)計及計算
- 奶牛性控凍精的使用細(xì)則:張相文 整理
- GB/T 34376-2017數(shù)控板料折彎機(jī)技術(shù)條件
- GB/T 22492-2008大豆肽粉
- 三年級下冊豎式脫式計算
- 《財務(wù)風(fēng)險的識別與評估管理國內(nèi)外文獻(xiàn)綜述》
- 海口市存量房買賣合同模板(范本)
- 經(jīng)典文學(xué)作品中的女性形象研究外文文獻(xiàn)翻譯2016年
- 高爐煤氣安全知識的培訓(xùn)
- 2008 年全國高校俄語專業(yè)四級水平測試試卷
評論
0/150
提交評論