




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省泉州市泉港一中等2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.52.設(shè)過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關(guān)于軸對稱,為坐標(biāo)原點,若,且,則點的軌跡方程是()A. B.C. D.3.設(shè),滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.1204.費馬素數(shù)是法國大數(shù)學(xué)家費馬命名的,形如的素數(shù)(如:)為費馬索數(shù),在不超過30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()A. B. C. D.5.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③6.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.7.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.8.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.49.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.810.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.11.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或512.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.14.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面15.設(shè)變量,,滿足約束條件,則目標(biāo)函數(shù)的最小值是______.16.如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.18.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對稱軸方程.19.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.20.(12分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內(nèi)的動點在點右側(cè),拋物線上第四象限內(nèi)的動點,滿足,求直線的斜率范圍.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.22.(10分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(丁)C(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.2、A【解析】
設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運算表示出,從而可利用表示出;由坐標(biāo)運算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標(biāo)運算、數(shù)量積運算;關(guān)鍵是利用動點坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運算可整理得軌跡方程.3、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當(dāng)時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.4、B【解析】
基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個不同費馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.5、C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.6、D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進(jìn)行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.7、D【解析】
根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.8、B【解析】
作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.【點睛】本題考查集合的交集運算,關(guān)鍵在于作出集合所表示的點的圖象,再運用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.9、C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.10、A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.11、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.12、D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠(yuǎn),可得,選項成立;,,可知比離對稱軸遠(yuǎn),選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意,將點的坐標(biāo)代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.14、π.【解析】
設(shè)三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.15、7【解析】作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,其中A(2,1),B(1,2),C(4,5)設(shè)z=F(x,y)=2x+3y,將直線l:z=2x+3y進(jìn)行平移,當(dāng)l經(jīng)過點A時,目標(biāo)函數(shù)z達(dá)到最小值∴z最小值=F(2,1)=716、1【解析】
由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:.故答案為:1.【點睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時,,即在上增;當(dāng)時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時,,在單調(diào)遞增,所以滿足題意;當(dāng)時,,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.18、(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.19、見解析【解析】
(1)如圖,連接,交于點,連接,,則為的中點,因為為的中點,所以,又,所以,從而,,,四點共面.因為平面,平面,平面平面,所以.又,所以四邊形為平行四邊形,所以,所以(2)因為,為的中點,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分別以,,的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,因為,,所以,,,,所以,,.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個法向量為.設(shè)平面的法向量為,則,即,令,可得,,所以平面的一個法向量為,所以,所以平面與平面所成二面角的正弦值為.20、(1)1;(2)【解析】
(1)根據(jù)點到焦點的距離為2,利用拋物線的定義得,再根據(jù)點在拋物線上有,列方程組求解,(2)設(shè),根據(jù),再由,求得,當(dāng),即時,直線斜率不存在;當(dāng)時,,令,利用導(dǎo)數(shù)求解,【詳解】(1)因為點到焦點的距離為2,即點到準(zhǔn)線的距離為2,得,又,解得,所以拋物線方程為(2)設(shè),由由,則當(dāng),即時,直線斜率不存在;當(dāng)時,令,所以在上分別遞減則【點睛】本題主要考查拋物線定義及方程的應(yīng)用,還考查了分類討論的思想和運算求解的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水產(chǎn)品冷凍加工與冷藏設(shè)施設(shè)計考核試卷
- 船舶動力系統(tǒng)的故障診斷與維修策略優(yōu)化考核試卷
- 探秘波粒二象性
- 碩士之路解析
- 外貿(mào)英文函電課件
- 四川司法警官職業(yè)學(xué)院《房地產(chǎn)開發(fā)項目管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽化工大學(xué)《建筑荷載》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海市封浜高中2024-2025學(xué)年招生全國統(tǒng)一考試模擬試卷分科綜合卷化學(xué)試題(三)含解析
- 內(nèi)蒙古自治區(qū)根河市市級名校2024-2025學(xué)年初三3月網(wǎng)絡(luò)模擬考試生物試題含解析
- 南京警察學(xué)院《作者電影賞析》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年10月廣東省高等教育自學(xué)考試00055企業(yè)會計學(xué)試卷及答案
- 微型計算機(jī)原理及接口技術(shù)知到智慧樹章節(jié)測試課后答案2024年秋重慶大學(xué)
- 2024年四川省公務(wù)員錄用考試《行測》真題及答案解析
- 2024-2025學(xué)年六年級上冊數(shù)學(xué)人教版期中考試試題(1-4單元)(含答案)
- 浙江省寧波市鎮(zhèn)海中學(xué)高三下學(xué)期適應(yīng)性測試數(shù)學(xué)試卷2
- Unit 7單元話題寫作“中國傳統(tǒng)節(jié)日”五年級下冊譯林版三起
- 憲法與法律學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 廣州數(shù)控GSK 980TDc車床CNC使用手冊
- ISO27001信息安全管理體系培訓(xùn)資料
- 小學(xué)美術(shù)人教版六年級上冊 教案-點的集合
- 紅色經(jīng)典影片與近現(xiàn)代中國發(fā)展學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論