版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專題17函數(shù)求參問題真題呈現(xiàn)一、單選題1.設函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】函數(shù)SKIPIF1<0在R上單調遞增,而函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,則有函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D2.函數(shù)SKIPIF1<0存在3個零點,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0要存在3個零點,則SKIPIF1<0要存在極大值和極小值,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0,若SKIPIF1<0要存在3個零點,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:B.3.已知SKIPIF1<0是偶函數(shù),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【解析】因為SKIPIF1<0為偶函數(shù),則SKIPIF1<0,又因為SKIPIF1<0不恒為0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D.4.若SKIPIF1<0為偶函數(shù),則SKIPIF1<0(
).A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【解析】因為SKIPIF1<0為偶函數(shù),則SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則其定義域為SKIPIF1<0或SKIPIF1<0,關于原點對稱.SKIPIF1<0,故此時SKIPIF1<0為偶函數(shù).故選:B.5.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.6.設SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0內恰有6個零點,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】SKIPIF1<0最多有2個根,所以SKIPIF1<0至少有4個根,由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,(1)SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0有4個零點,即SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0有5個零點,即SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0有6個零點,即SKIPIF1<0;(2)當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0無零點;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0有1個零點;當SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0有2個零點;所以若SKIPIF1<0時,SKIPIF1<0有1個零點.綜上,要使SKIPIF1<0在區(qū)間SKIPIF1<0內恰有6個零點,則應滿足SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,則可解得a的取值范圍是SKIPIF1<0.二、填空題7.已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0有且僅有3個零點,則SKIPIF1<0的取值范圍是________.【解析】因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0有3個根,令SKIPIF1<0,則SKIPIF1<0有3個根,其中SKIPIF1<0,結合余弦函數(shù)SKIPIF1<0的圖像性質可得SKIPIF1<0,故SKIPIF1<0,8.若SKIPIF1<0為偶函數(shù),則SKIPIF1<0________.【解析】因為SKIPIF1<0為偶函數(shù),定義域為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,此時SKIPIF1<0,所以SKIPIF1<0,又定義域為SKIPIF1<0,故SKIPIF1<0為偶函數(shù),所以SKIPIF1<0.9.若函數(shù)SKIPIF1<0有且僅有兩個零點,則SKIPIF1<0的取值范圍為_________.【解析】(1)當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0成立;若SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0,若方程有一根為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0;若方程有一根為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0且SKIPIF1<0;若SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0成立.(2)當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0,顯然SKIPIF1<0不成立;若SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0,若方程有一根為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0;若方程有一根為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0;若SKIPIF1<0時,SKIPIF1<0,顯然SKIPIF1<0不成立;綜上,當SKIPIF1<0時,零點為SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,零點為SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,只有一個零點SKIPIF1<0;當SKIPIF1<0時,零點為SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,只有一個零點SKIPIF1<0;當SKIPIF1<0時,零點為SKIPIF1<0,SKIPIF1<0;當SKIPIF1<0時,零點為SKIPIF1<0.所以,當函數(shù)有兩個零點時,SKIPIF1<0且SKIPIF1<0.故答案為:SKIPIF1<0.10.設SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,則a的取值范圍是______.【解析】由函數(shù)的解析式可得SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,則SKIPIF1<0,即SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0,結合題意可得實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.11.設SKIPIF1<0,對任意實數(shù)x,記SKIPIF1<0.若SKIPIF1<0至少有3個零點,則實數(shù)SKIPIF1<0的取值范圍為______.【解析】設SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0.要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則函數(shù)SKIPIF1<0至少有一個零點,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.①當SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0、SKIPIF1<0的圖象如下圖所示:此時函數(shù)SKIPIF1<0只有兩個零點,不合乎題意;②當SKIPIF1<0時,設函數(shù)SKIPIF1<0的兩個零點分別為SKIPIF1<0、SKIPIF1<0,要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0;③當SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0、SKIPIF1<0的圖象如下圖所示:由圖可知,函數(shù)SKIPIF1<0的零點個數(shù)為SKIPIF1<0,合乎題意;④當SKIPIF1<0時,設函數(shù)SKIPIF1<0的兩個零點分別為SKIPIF1<0、SKIPIF1<0,要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.12.已知SKIPIF1<0,函數(shù)SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0___________.【解析】SKIPIF1<0,故SKIPIF1<0,13.已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0______.【解析】因為SKIPIF1<0,故SKIPIF1<0,因為SKIPIF1<0為偶函數(shù),故SKIPIF1<0,時SKIPIF1<0,整理得到SKIPIF1<0,故SKIPIF1<0,三、雙空題14.已知函數(shù)SKIPIF1<0則SKIPIF1<0________;若當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的最大值是_________.【解析】由已知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0等價于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<0.15.若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【解析】[方法一]:奇函數(shù)定義域的對稱性若SKIPIF1<0,則SKIPIF1<0的定義域為SKIPIF1<0,不關于原點對稱,SKIPIF1<0若奇函數(shù)的SKIPIF1<0有意義,則SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),定義域關于原點對稱,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.[方法二]:函數(shù)的奇偶性求參SKIPIF1<0,SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0[方法三]:因為函數(shù)SKIPIF1<0為奇函數(shù),所以其定義域關于原點對稱.由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,即函數(shù)的定義域為SKIPIF1<0,再由SKIPIF1<0可得,SKIPIF1<0.即SKIPIF1<0,在定義域內滿足SKIPIF1<0,符合題意.16.設函數(shù)SKIPIF1<0若SKIPIF1<0存在最小值,則a的一個取值為_____;a的最大值為___________.【解析】若SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0;若SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0單調遞增,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0沒有最小值,不符合題目要求;若SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0單調遞減,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0,綜上可得SKIPIF1<0;故答案為:0(答案不唯一),1考點一定義域、值域求參一、單選題1.已知函數(shù)SKIPIF1<0若SKIPIF1<0的值域為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】根據題意可得,在同一坐標系下分別畫出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示:由圖可知,當SKIPIF1<0或SKIPIF1<0時,兩圖象相交,若SKIPIF1<0的值域是SKIPIF1<0,以實數(shù)SKIPIF1<0為分界點,可進行如下分類討論:當SKIPIF1<0時,顯然兩圖象之間不連續(xù),即值域不為SKIPIF1<0;同理當SKIPIF1<0,值域也不是SKIPIF1<0;當SKIPIF1<0時,兩圖象相接或者有重合的部分,此時值域是SKIPIF1<0;綜上可知,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B2.已知函數(shù)SKIPIF1<0的值域為SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0(
)A.7 B.8 C.9 D.10【解析】在函數(shù)SKIPIF1<0中,值域為SKIPIF1<0∴函數(shù)SKIPIF1<0的值域為SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0在SKIPIF1<0中,值域為SKIPIF1<0∴在SKIPIF1<0中,值域為SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得:,SKIPIF1<0∴SKIPIF1<0,故選:C.3.已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,則實數(shù)SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由于函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0恒成立,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,由于SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,則由SKIPIF1<0解得SKIPIF1<0,故SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0即SKIPIF1<0的兩個根,則SKIPIF1<0,得到SKIPIF1<0,符合題意.所以SKIPIF1<0.故SKIPIF1<0,故選:C4.已知函數(shù)SKIPIF1<0,SKIPIF1<0.若存在SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】SKIPIF1<0時單調遞增函數(shù),SKIPIF1<0的值域是SKIPIF1<0,SKIPIF1<0的對稱軸是SKIPIF1<0,在SKIPIF1<0上,函數(shù)單調遞減,SKIPIF1<0的值域是SKIPIF1<0,因為存在SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,所以SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,故選:A5.已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因為SKIPIF1<0,所以SKIPIF1<0.設SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0是偶函數(shù).因為SKIPIF1<0的值域是SKIPIF1<0,所以SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:B二、多選題6.若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,則SKIPIF1<0的值可能為(
)A.2 B.3 C.4 D.5【解析】SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調遞減,在SKIPIF1<0上單調遞增,且SKIPIF1<0,SKIPIF1<0,因為值域為SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0的值可能是2,3,4.故選:ABC三、填空題7.若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則實數(shù)a的取值范圍為______.【解析】由函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0恒成立,結合一元二次方程的性質,則滿足SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.8.已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則實數(shù)SKIPIF1<0的范圍________.【解析】因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所SKIPIF1<0恒成立,當SKIPIF1<0時,SKIPIF1<0恒成立,當SKIPIF1<0時,則SKIPIF1<0,解得SKIPIF1<0,綜上所述,SKIPIF1<0.故答案為:SKIPIF1<0.9.函數(shù)SKIPIF1<0在SKIPIF1<0上有意義,則實數(shù)a的取值范圍為______.【解析】由題意函數(shù)SKIPIF1<0在SKIPIF1<0上有意義,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故實數(shù)a的取值范圍為SKIPIF1<0,10.已知函數(shù)SKIPIF1<0(SKIPIF1<0)的最小值為2,則實數(shù)a的取值范圍是______.【解析】SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0單調遞增,所以當SKIPIF1<0時,SKIPIF1<0恒成立,注意到SKIPIF1<0,所以由SKIPIF1<0得SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,令SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,任取SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0,所以在區(qū)間SKIPIF1<0上SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.四、雙空題11.若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則a的取值范圍為__________;若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則a的取值范圍為__________.【解析】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0對于SKIPIF1<0恒成立,故SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0;若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,即SKIPIF1<0能取到所有正數(shù),故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0五、解答題12.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0的定義域為[-2,1],求實數(shù)a的值;(2)若SKIPIF1<0的定義域為R,求實數(shù)a的取值范圍.【解析】(1)命題等價于不等式SKIPIF1<0的解集為SKIPIF1<0,顯然SKIPIF1<0,如圖.
SKIPIF1<0且SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩根,SKIPIF1<0,解得:SKIPIF1<0.(2)①若SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,定義域為R,滿足題意;當SKIPIF1<0時,SKIPIF1<0,定義域不為R,不滿足題意;②若SKIPIF1<0,SKIPIF1<0為二次函數(shù),SKIPIF1<0定義域為R,SKIPIF1<0對SKIPIF1<0恒成立,SKIPIF1<0;綜合①、②得a的取值范圍SKIPIF1<0.13.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0的定義域為R,求a的取值范圍;(2)若SKIPIF1<0的值域為R,求a的取值范圍;(3)若SKIPIF1<0在SKIPIF1<0上單調,求a的取值范圍.【解析】(1)由題意得SKIPIF1<0恒成立,所以SKIPIF1<0,得SKIPIF1<0,即a的取值范圍為SKIPIF1<0.(2)由題意得,SKIPIF1<0的值能取到所有正數(shù),所以SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,即a的取值范圍為SKIPIF1<0.(3)當SKIPIF1<0在SKIPIF1<0上單調遞增時,SKIPIF1<0得SKIPIF1<0.當SKIPIF1<0在SKIPIF1<0上單調遞減時,SKIPIF1<0得SKIPIF1<0.綜上,a的取值范圍為SKIPIF1<0.14.已知函數(shù)SKIPIF1<0(1)若其定義域是SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍;(2)若其值域是SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.【解析】(1)由題知,SKIPIF1<0,定義域是SKIPIF1<0,所以SKIPIF1<0恒成立,當SKIPIF1<0時,SKIPIF1<0恒成立,當SKIPIF1<0時,應滿足SKIPIF1<0,解得SKIPIF1<0,綜上可得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0(2)由題知,SKIPIF1<0,值域是SKIPIF1<0所以SKIPIF1<0,令SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0不滿足題意,當SKIPIF1<0時,SKIPIF1<0,開口向下,不滿足題意,當SKIPIF1<0時,應滿足SKIPIF1<0,解得SKIPIF1<0,綜上可得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0考點二函數(shù)性質求參一、單選題1.已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),函數(shù)SKIPIF1<0的圖像開口向下,對稱軸為SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為減函數(shù),且SKIPIF1<0.所以函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù).由SKIPIF1<0得SKIPIF1<0.解得SKIPIF1<0.故選:A.2.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0是奇函數(shù),函數(shù)SKIPIF1<0為偶函數(shù),當SKIPIF1<0時,SKIPIF1<0,則下列選項不正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】選項A,因為SKIPIF1<0是定義域為SKIPIF1<0的奇函數(shù),又當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,故選項A是正確的;選項B,因為函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,即SKIPIF1<0,故選項B是正確的;選項C,因為函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期為4,故SKIPIF1<0,故選項C是正確的;選項D,因為SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故選項D錯誤.故選:D.3.設SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),則SKIPIF1<0=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:B.4.設函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當SKIPIF1<0時,SKIPIF1<0若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由SKIPIF1<0是奇函數(shù),得SKIPIF1<0,SKIPIF1<0由SKIPIF1<0是偶函數(shù),得SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0.則SKIPIF1<0SKIPIF1<0.故選:SKIPIF1<0.5.設函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞增,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,則二次函數(shù)SKIPIF1<0的圖象開口向上,對稱軸為直線SKIPIF1<0,因為外層函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為增函數(shù),所以,內層函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),故SKIPIF1<0.故選:D.二、多選題6.已知函數(shù)SKIPIF1<0是SKIPIF1<0上的增函數(shù),則實數(shù)SKIPIF1<0的值可以是(
)A.4 B.3 C.SKIPIF1<0 D.SKIPIF1<0【解析】由函數(shù)SKIPIF1<0是SKIPIF1<0上的增函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,故選:CD.三、填空題7.函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,則實數(shù)SKIPIF1<0的取值范圍是________.【解析】由函數(shù)SKIPIF1<0,可得函數(shù)SKIPIF1<0的單調遞增區(qū)間為SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調遞增,可得SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.8.若函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,則實數(shù)SKIPIF1<0的取值范圍為________.【解析】由函數(shù)SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調遞增,則滿足SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.9.函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則SKIPIF1<0的取值范圍是__________.【解析】函數(shù)SKIPIF1<0開口向上,對稱軸為SKIPIF1<0,要使函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.10.已知函數(shù)SKIPIF1<0與SKIPIF1<0在區(qū)間SKIPIF1<0上都是減函數(shù),那么SKIPIF1<0__________.【解析】根據二次函數(shù)的表達式可知,SKIPIF1<0的對稱軸為SKIPIF1<0,開口向下,若SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù),則SKIPIF1<0,SKIPIF1<0是反比例型函數(shù),若SKIPIF1<0在區(qū)間SKIPIF1<0是減函數(shù),則SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0與SKIPIF1<0在區(qū)間SKIPIF1<0上都是減函數(shù),a的取值范圍為SKIPIF1<0.11.已知函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____.【解析】因為函數(shù)SKIPIF1<0是奇函數(shù),由已知得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0的定義域為SKIPIF1<0滿足題意.12.已知函數(shù)SKIPIF1<0是SKIPIF1<0上的奇函數(shù),則實數(shù)SKIPIF1<0______.【解析】因為函數(shù)SKIPIF1<0是SKIPIF1<0上的奇函數(shù),則SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0.13.若函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),則SKIPIF1<0________.【解析】因為函數(shù)SKIPIF1<0是定義在SKIPIF1<0,SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.14.已知函數(shù)SKIPIF1<0是偶函數(shù),SKIPIF1<0,則SKIPIF1<0_______.【解析】已知函數(shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,經檢驗,SKIPIF1<0滿足題意,因為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,15.關于SKIPIF1<0的函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,且SKIPIF1<0,則實數(shù)SKIPIF1<0的值為____.【解析】因為SKIPIF1<0SKIPIF1<0,設函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,對任意的SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以,函數(shù)SKIPIF1<0的定義域關于原點對稱,所以,SKIPIF1<0,所以,函數(shù)SKIPIF1<0的圖象關于點SKIPIF1<0對稱,所以,函數(shù)SKIPIF1<0圖象的最高點和最低點也關于點SKIPIF1<0對稱,所以,SKIPIF1<0,解得SKIPIF1<0.16.若函數(shù)SKIPIF1<0;且SKIPIF1<0,則SKIPIF1<0______.【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0故答案為:7.四、解答題17.己知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0的單減區(qū)間是SKIPIF1<0,求實數(shù)a的值;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單減函數(shù),求實數(shù)a的取值范圍.【解析】(1)依題意,SKIPIF1<0,由二次函數(shù)的性質知,SKIPIF1<0的對稱軸方程為SKIPIF1<0,開口向上,所以SKIPIF1<0的單減區(qū)間是SKIPIF1<0,因為函數(shù)SKIPIF1<0的單減區(qū)間是SKIPIF1<0,所以SKIPIF1<0.(2)依題意,SKIPIF1<0,由二次函數(shù)的性質知,SKIPIF1<0的對稱軸方程為SKIPIF1<0,開口向上,所以SKIPIF1<0的單減區(qū)間是SKIPIF1<0,因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)a的取值范圍為SKIPIF1<0.18.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,求實數(shù)a的取值范圍;(2)若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,求實數(shù)a的值.【解析】(1)SKIPIF1<0在SKIPIF1<0上單調遞增,且SKIPIF1<0為復合函數(shù),SKIPIF1<0單調遞增,所以,只需SKIPIF1<0在SKIPIF1<0上單調遞增,對稱軸SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0,故SKIPIF1<0.(2)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0恒成立,SKIPIF1<0,又值域為SKIPIF1<0,所以SKIPIF1<0的最小值為1,故SKIPIF1<0或SKIPIF1<0.考點三基本初等函數(shù)求參一、單選題1.冪函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則實數(shù)SKIPIF1<0值為(
)A.2 B.SKIPIF1<0 C.2或SKIPIF1<0 D.1【解析】SKIPIF1<0冪函數(shù)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0;又SKIPIF1<0時SKIPIF1<0為減函數(shù),SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,冪函數(shù)為SKIPIF1<0,滿足題意;當SKIPIF1<0時,SKIPIF1<0,冪函數(shù)為SKIPIF1<0,不滿足
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025借款合同書范文參考
- 城市交通信號改造監(jiān)理合同范例
- 兩岸服務業(yè)務合作2024年具體合同版B版
- 鞋帽市場外墻涂料施工協(xié)議
- 臨時服務電腦租賃協(xié)議范本
- 高鐵站水景建設協(xié)議
- 幼兒園接送安全員招聘協(xié)議
- 2025年度股權回購合同:公司回購股東股權的協(xié)議3篇
- 2025年建筑租賃公司鋼管租賃合同3篇
- 2024版金融服務與咨詢合同
- 人教版六年級語文上冊期末考試卷(完整版)
- 2023-2024學年第一學期期末質量檢測九年級物理試題(帶答案)
- 建筑幕墻物理性能分級
- 河南省2024年道法中考熱點備考重難專題:發(fā)展航天事業(yè)建設航天強國(課件)
- 臨床診療規(guī)范與操作指南制度
- DLT 5285-2018 輸變電工程架空導線(800mm以下)及地線液壓壓接工藝規(guī)程
- 新員工入職培訓測試題附有答案
- 勞動合同續(xù)簽意見單
- 大學生國家安全教育意義
- 2024年保育員(初級)培訓計劃和教學大綱-(目錄版)
- 河北省石家莊市2023-2024學年高二上學期期末考試 語文 Word版含答案
評論
0/150
提交評論