




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山西省陽泉市第十一中學(xué)高考沖刺模擬數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.2.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.163.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.4.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.05.已知,且,則()A. B. C. D.6.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.7.中,,為的中點,,,則()A. B. C. D.28.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.9.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.810.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.911.若均為任意實數(shù),且,則的最小值為()A. B. C. D.12.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的不等式對于任意恒成立,則實數(shù)的取值范圍為_________.14.若的展開式中所有項的系數(shù)之和為,則______,含項的系數(shù)是______(用數(shù)字作答).15.已知函數(shù)函數(shù),則不等式的解集為____.16.能說明“在數(shù)列中,若對于任意的,,則為遞增數(shù)列”為假命題的一個等差數(shù)列是______.(寫出數(shù)列的通項公式)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;(2)若,設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.19.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實數(shù),,滿足,求證:.20.(12分)已知拋物線:()上橫坐標為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設(shè)()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.21.(12分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標方程;(2)在什么范圍內(nèi)取值時,與有交點.22.(10分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;(2)若,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算、數(shù)乘運算,考查學(xué)生的運算能力,是一道中檔題.2、C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.3、A【解析】
利用復(fù)數(shù)的乘法、除法運算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.4、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;兩個隨機變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨立性檢驗等知識點,屬于基礎(chǔ)題.5、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.6、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).7、D【解析】
在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運算求解能力.8、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.9、B【解析】
利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.10、B【解析】
模擬程序運行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時可模擬程序運行,觀察變量值,從而得出結(jié)論.11、D【解析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉(zhuǎn)化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結(jié)合圖形,可以斷定那個點應(yīng)該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應(yīng)為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點睛】本題考查函數(shù)在一點處切線斜率的應(yīng)用,考查圓的程,兩條直線垂直的斜率關(guān)系,屬中檔題.12、C【解析】
根據(jù)三視圖可知,該幾何體是由兩個圓錐和一個圓柱構(gòu)成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側(cè)面積為,下面圓錐的母線長為,底面周長為,側(cè)面積為,沒被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點睛】本小題主要考查中國古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因為,,對任意恒成立,設(shè),其中,由不等式,可得:,則,當時等號成立,又因為在內(nèi)有解,,則,即:,所以實數(shù)的取值范圍:.故答案為:.【點睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計算能力.14、【解析】的展開式中所有項的系數(shù)之和為,,,項的系數(shù)是,故答案為(1),(2).15、【解析】,,所以,所以的解集為。點睛:本題考查絕對值不等式。本題先對絕對值函數(shù)進行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對值函數(shù)一般都去絕對值轉(zhuǎn)化為分段函數(shù)處理。16、答案不唯一,如【解析】
根據(jù)等差數(shù)列的性質(zhì)可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個遞減的數(shù)列,還需檢驗是否滿足命題中的條件,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)求導(dǎo)得到,討論和兩種情況,計算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當時恒成立,所以單調(diào)遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當即,所以符合題意,(ii)當即時,因為,故存在,所以不符題意(iii)當時,因為,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當時,恒成立,所以單調(diào)遞增,所以,即符合題意;②當時,恒成立,所以單調(diào)遞增,又因為,所以存在,使得,且當時,。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.【點睛】本題考查了函數(shù)的零點問題,恒成立問題,意在考查學(xué)生的分類討論能力和綜合應(yīng)用能力.18、(1)答案見解析(2)【解析】
(1)先對函數(shù)進行求導(dǎo)得,對分成和兩種情況討論,從而得到相應(yīng)的單調(diào)區(qū)間;(2)對函數(shù)求導(dǎo)得,從而有,,,三個方程中利用得到.將不等式的左邊轉(zhuǎn)化成關(guān)于的函數(shù),再構(gòu)造新函數(shù)利用導(dǎo)數(shù)研究函數(shù)的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調(diào)遞減;當時,令,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述:當時,在上單調(diào)遞減;當時,在上單調(diào)遞減,在上單調(diào)遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設(shè),則,∴在上單調(diào)遞減;當時,.∴,即所求的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,考查分類討論思想和數(shù)形結(jié)合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉(zhuǎn)化為單元問題,然后利用導(dǎo)數(shù)研究單變量函數(shù)的性質(zhì).19、(1);(2)證明見詳解.【解析】
(1)將不等式的解集用表示出來,結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因為的解集為,所以,;(2)由(1)由柯西不等式,當且僅當,,,等號成立.【點睛】本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.20、(1);(2)【解析】
(1)根據(jù)橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得到求解.(2)設(shè)過點的直線方程為,根據(jù)直線與圓相切,則有,整理得:,根據(jù)題意,建立,將韋達定理代入求解.【詳解】(1)因為橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得:,解得:.(2)設(shè)過點的直線方程為,因為直線與圓相切,所以,整理得:,,由題意得:所以,,因為,所以,所以.【點睛】本題主要考查拋物線的定義及點與拋物線,直線與圓的位置關(guān)系,還考查了運算求解的能力,屬于中檔題.21、(1),.(2)【解析】
(1)利用,代入可求;消參可得直角坐標方程.(2)將的參數(shù)方程代入的直角坐標方程,與有交點,可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標方程得:與有交點,即【點睛】本題考查了極坐標方程與普通方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化、直線與圓的位置關(guān)系的判斷,屬于基礎(chǔ)題.22、(1)(2)【解析】
(1)根據(jù)單調(diào)遞減可知導(dǎo)函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函數(shù),分析與最值之間的關(guān)系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 碩士生指導(dǎo)藝術(shù)
- 羅定職業(yè)技術(shù)學(xué)院《裝配式混凝土建筑技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 通化醫(yī)藥健康職業(yè)學(xué)院《圖形圖像處理技術(shù)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧師范高等??茖W(xué)?!哆\動控制理論與應(yīng)用技術(shù)Ⅱ》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧省盤錦市重點達標名校2025屆初三3月月考調(diào)研考試數(shù)學(xué)試題含解析
- 山東省青島第三中學(xué)2025年高三下學(xué)期月考二生物試題含解析
- 天津理工大學(xué)《工程制圖及CAD》2023-2024學(xué)年第二學(xué)期期末試卷
- 嘉應(yīng)學(xué)院《生物制藥專業(yè)導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西省新余四中、上2024-2025學(xué)年高三下學(xué)期期末考試(一模)歷史試題含解析
- 山西省臨汾市安澤縣2025年小升初復(fù)習(xí)數(shù)學(xué)模擬試卷含解析
- 機械租賃保障措施
- 2024-2030年中國病號服行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 洗煤廠安全應(yīng)急預(yù)案
- 抖音火花合同模板
- 掬水月在手-古典詩詞與現(xiàn)代人生智慧樹知到期末考試答案章節(jié)答案2024年南開大學(xué)
- 北京市通州區(qū)社區(qū)工作者考試題庫及參考答案一套
- 基于STM32F103C8T6單片機的電動車智能充電樁計費系統(tǒng)設(shè)計
- 人工智能原理與技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年同濟大學(xué)
- 在線網(wǎng)課知慧《數(shù)智時代的商業(yè)變革(山大(威海))》單元測試考核答案
- 心臟康復(fù)護理專家共識
- CO2氣體保護焊-基本操作方法(焊接技能)
評論
0/150
提交評論