




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市綦江區(qū)南州中學2025屆高考仿真模擬數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖像大致為().A. B.C. D.2.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.3.若,則函數在區(qū)間內單調遞增的概率是()A.B.C.D.4.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數為,若的數學期望,則的取值范圍為()A. B. C. D.5.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.6.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.38.如果實數滿足條件,那么的最大值為()A. B. C. D.9.已知(),i為虛數單位,則()A. B.3 C.1 D.510.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設函數,則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間11.定義在上的偶函數,對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.12.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數有()A.1個 B.2個 C.0個 D.無數個二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C:經過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.14.已知為等比數列,是它的前項和.若,且與的等差中項為,則__________.15.(5分)有一道描述有關等差與等比數列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數列,后三個和尚的身高依次成等比數列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.16.若非零向量,滿足,,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.18.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.19.(12分)已知,如圖,曲線由曲線:和曲線:組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積的最大值.20.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數的取值范圍21.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.22.(10分)已知函數,(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數,當時,試判斷的零點個數.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
本題采用排除法:由排除選項D;根據特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數,則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數解析式較復雜的圖象的判斷;利用函數奇偶性、特殊值符號的正負等有關性質進行逐一排除是解題的關鍵;屬于中檔題.2、D【解析】
可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.3、B【解析】函數在區(qū)間內單調遞增,,在恒成立,在恒成立,,函數在區(qū)間內單調遞增的概率是,故選B.4、A【解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功5、B【解析】
設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.6、C【解析】
作出韋恩圖,數形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關系及充要條件,注意數形結合方法的應用,屬于基礎題.7、A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.8、B【解析】
解:當直線過點時,最大,故選B9、C【解析】
利用復數代數形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數代數形式的乘法運算,是基礎題.10、D【解析】
可判斷函數為奇函數,先討論當且時的導數情況,再畫出函數大致圖形,將所求區(qū)間端點值分別看作對應常函數,再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數的奇偶性,單調性求解對應自變量范圍,導數法研究函數增減性,數形結合思想,轉化與化歸思想,屬于難題11、A【解析】
根據偶函數的性質和單調性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數所以在上遞減又因為,,所以故選:A【點睛】考查偶函數的性質以及單調性的應用,基礎題.12、B【解析】
圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.14、【解析】
設等比數列的公比為,根據題意求出和的值,進而可求得和的值,利用等比數列求和公式可求得的值.【詳解】由等比數列的性質可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【點睛】本題考查等比數列求和,解答的關鍵就是等比數列的公比,考查計算能力,屬于基礎題.15、【解析】
依題意設前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數列,則公比,故.16、1【解析】
根據向量的模長公式以及數量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數量積公式以及模長公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數,屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.18、(1);(2).【解析】
(1)利用余弦定理得出關于的二次方程,結合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數的基本關系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數的基本關系以及二倍角公式求值,考查計算能力,屬于中等題.19、(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)由,可得,解出即可;(Ⅱ)設點,設直線,與橢圓方程聯立可得:,利用,根與系數的關系、中點坐標公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設直線的方程為:,與橢圓方程聯立可得:,利用根與系數的關系、弦長公式、三角形的面釈計算公式、基本不等式的性質,即可求解.【詳解】(Ⅰ)由題意:,,解得,則曲線的方程為:和.(Ⅱ)證明:由題意曲線的漸近線為:,設直線,則聯立,得,,解得:,又由數形結合知.設點,則,,,,,即點在直線上.(Ⅲ)由(Ⅰ)知,曲線,點,設直線的方程為:,聯立,得:,,設,,,,面積,令,,當且僅當,即時等號成立,所以面積的最大值為.【點睛】本題考查了橢圓與雙曲線的標準方程及其性質、直線與橢圓的相交問題、弦長公式、三角形的面積計算公式、基本不等式的性質,考查了推理論證能力與運算求解能力,屬于難題.20、(1).(2).【解析】試題分析:(Ⅰ)通過討論x的范圍,得到關于x的不等式組,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到關于a的不等式,解出即可.試題解析:(1)不等式等價于或或,解得或,所以不等式的解集是;(2),,,解得實數的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.21、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標系,求平面的一個法向量與平面的一個法向量,再利用向量數量積運算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因為,所以平面,又平面,所以.(2)設,,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點,為的中點,所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標系,,,由平面幾何知識,得.則,,,,所以,,.設平面的法向量為,由,可得,令,則,,所以.同理,平面的一個法向量為.設平面與平面所成角為,則,所以.【點睛】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點考查了空
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CSIQ 8005-2018背包與手袋
- T/CSIQ 1000-2015藝術品鑒證質量溯源規(guī)程總則
- T/CSBME 076-2023血液透析器中二甲基乙酰胺(DMAC)溶出量的測定方法氣相色譜法
- T/CRIA 16016-2023防物料粘附織物芯輸送帶
- T/CNCA 011-2021井工煤礦自然災害承災體調查技術要求
- T/CMES 37003-2022景區(qū)玻璃類觀景設施安全規(guī)范
- T/CIE 164-2023上合國家間企業(yè)信用調查報告格式規(guī)范
- T/CHINABICYCLE 16-2023產品碳足跡產品種類規(guī)則電動自行車
- T/CHC 1010-2023彈性蛋白肽
- T/CGCC 51-2021發(fā)酵粽子
- 防汛物資臺賬參考模板范本
- 新生兒預防接種的標準及注意事項
- 瀝青路面施工旁站監(jiān)理記錄表多篇
- 派出所轄區(qū)治安形勢分析報告(通用6篇)
- DN900鋼管dn800PE管定向鉆穿越京杭大運河施工方案
- 養(yǎng)老地產項目區(qū)域綜合開發(fā)新模式_secret
- 員工手冊070509
- 羅斯公司理財Chap004全英文題庫及答案
- 工業(yè)固體廢物綜合利用項目建議書范文
- 雍布拉康課件
- 英威騰高壓變頻器CHH100說明書_圖文
評論
0/150
提交評論