




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省邛崍市文昌中學(xué)2025屆高三考前熱身數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.452.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.3.已知全集,則集合的子集個數(shù)為()A. B. C. D.4.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現(xiàn)目標,現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種5.使得的展開式中含有常數(shù)項的最小的n為()A. B. C. D.6.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.7.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學(xué)用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下20組隨機數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.8.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.9.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實數(shù)()A. B. C. D.10.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.11.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.8412.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.變量滿足約束條件,則目標函數(shù)的最大值是____.14.學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是___.15.在疫情防控過程中,某醫(yī)院一次性收治患者127人.在醫(yī)護人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.16.已知數(shù)列的各項均為正數(shù),記為數(shù)列的前項和,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.(1)求拋物線的方程;(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設(shè)的中點為,若、、四點共圓,求直線的方程.18.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.19.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設(shè)為的中點,且,的平分線交于點,求線段的長.20.(12分)已知拋物線:()上橫坐標為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設(shè)()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.21.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.2、B【解析】
利用復(fù)數(shù)的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復(fù)數(shù)的四則運算,需掌握復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.3、C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題4、B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎(chǔ)題.5、B【解析】二項式展開式的通項公式為,若展開式中有常數(shù)項,則,解得,當(dāng)r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應(yīng)用.6、C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當(dāng)時,;當(dāng)時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.7、A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時出現(xiàn)時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數(shù)的應(yīng)用和古典概型概率的計算,屬于基礎(chǔ)題.8、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.9、B【解析】
求出,把坐標代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值.10、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.11、B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計算能力和空間想象能力.12、A【解析】
根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
分析:畫出可行域,平移直線,當(dāng)直線經(jīng)過時,可得有最大值.詳解:畫出束條件表示的可行性,如圖,由可得,可得,目標函數(shù)變形為,平移直線,當(dāng)直線經(jīng)過時,可得有最大值,故答案為.點睛:本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的定點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.14、C【解析】
假設(shè)獲得一等獎的作品,判斷四位同學(xué)說對的人數(shù).【詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗條件.15、161【解析】
由題意可知出院人數(shù)構(gòu)成一個首項為1,公比為2的等比數(shù)列,由此可求結(jié)果.【詳解】某醫(yī)院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開始,每天出院人數(shù)構(gòu)成以1為首項,2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院.故答案為:16,1.【點睛】本題主要考查了等比數(shù)列在實際問題中的應(yīng)用,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查推理能力與計算能力,屬于中檔題.16、63【解析】
對進行化簡,可得,再根據(jù)等比數(shù)列前項和公式進行求解即可【詳解】由數(shù)列為首項為,公比的等比數(shù)列,所以63【點睛】本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時,常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由拋物線的定義可得,即可求出,從而得到拋物線方程;(2)設(shè)直線的方程為,代入,得.設(shè),,列出韋達定理,表示出中點的坐標,若、、、四點共圓,再結(jié)合,得,則即可求出參數(shù),從而得解;【詳解】解:(1)由拋物線定義,得,解得,所以拋物線的方程為.(2)設(shè)直線的方程為,代入,得.設(shè),,則,.由,,得,所以.因為直線的斜率為,所以直線的斜率為,則直線的方程為.由解得.若、、、四點共圓,再結(jié)合,得,則,解得,所以直線的方程為.【點睛】本題考查拋物線的定義及性質(zhì)的應(yīng)用,直線與拋物線綜合問題,屬于中檔題.18、(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應(yīng)的概率,列出分布列,計算數(shù)學(xué)期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都選高校,共有四種情況,甲同學(xué)選高校的概率為,因此乙、丙兩同學(xué)選高校的概率為,因為每位同學(xué)彼此獨立,所以甲、乙、丙三名同學(xué)都選高校的概率為.(2)(i)甲同學(xué)必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學(xué)彼此獨立,所以甲同學(xué)選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學(xué)期望為.【點睛】本題考查了事件獨立性的應(yīng)用和隨機變量的分布列和期望,考查了學(xué)生綜合分析,概念理解,實際應(yīng)用,數(shù)學(xué)運算的能力,屬于中檔題.19、(1),;(2).【解析】
(1)根據(jù)面積公式和數(shù)量積性質(zhì)求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當(dāng)且僅當(dāng)時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,余弦定理解三角形及三角形面積公式的應(yīng)用,屬于中檔題.20、(1);(2)【解析】
(1)根據(jù)橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得到求解.(2)設(shè)過點的直線方程為,根據(jù)直線與圓相切,則有,整理得:,根據(jù)題意,建立,將韋達定理代入求解.【詳解】(1)因為橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得:,解得:.(2)設(shè)過點的直線方程為,因為直線與圓相切,所以,整理得:,,由題意得:所以,,因為,所以,所以.【點睛】本題主要考查拋物線的定義及點與拋物線,直線與圓的位置關(guān)系,還考查了運算求解的能力,屬于中檔題.21、(1),();(2).【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大班語言故事教學(xué)
- 一家IT企業(yè)的商業(yè)計劃書
- 2024屆吉林省長春市第29中學(xué)中考猜題數(shù)學(xué)試卷含解析
- 安裝工程計量與計價課件:認識工程量清單計價體系
- 19.《剃頭大師》課件
- 一年級班主任班級管理提升計劃
- 八年級地理教學(xué)計劃的家校合作策略
- 2024屆建湖實中教育集團中考數(shù)學(xué)五模試卷含解析
- 醫(yī)療行業(yè)融資計劃書范文
- 高端家政服務(wù)員技能提升計劃
- YOLO目標檢測算法的改進與優(yōu)化
- 《液相色譜-質(zhì)譜聯(lián)用》課件
- 大數(shù)據(jù)與商業(yè)決策的應(yīng)用試題及答案
- 學(xué)做鹵菜簽合同協(xié)議
- GB/T 15340-2025天然、合成生膠取樣及其制樣方法
- 公路法知識培訓(xùn)課件
- 《鄉(xiāng)土中國》課件統(tǒng)編版高一語文必修上冊
- 馬拉松方案策劃
- 2025年全國青少年禁毒知識競賽題庫及答案(中學(xué)生組)
- 畢業(yè)設(shè)計(論文)-基于PLC的自動上料系統(tǒng)設(shè)計
- 武裝部面試題及答案
評論
0/150
提交評論