




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆黑龍江省青岡縣一中高考考前提分數(shù)學(xué)仿真卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.32.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)3.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.4.某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.605.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.6.已知正項等比數(shù)列的前項和為,且,則公比的值為()A. B.或 C. D.7.已知向量,,則向量在向量上的投影是()A. B. C. D.8.已知是定義在上的奇函數(shù),且當時,.若,則的解集是()A. B.C. D.9.若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.10.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.11.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知,則的值構(gòu)成的集合是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數(shù)列,后三個和尚的身高依次成等比數(shù)列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.14.已知數(shù)列滿足,且,則______.15.已知平面向量,,且,則向量與的夾角的大小為________.16.若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積18.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.19.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若點是直線的一點,過點作曲線的切線,切點為,求的最小值.21.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.22.(10分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.2、C【解析】
根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項A,函數(shù),故錯誤;選項B,函數(shù)為非奇非偶函數(shù),故錯誤;選項C,函數(shù)是以1為周期的周期函數(shù),故正確;選項D,函數(shù)在區(qū)間上是增函數(shù),但在整個定義域范圍上不具備單調(diào)性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.3、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.4、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題5、B【解析】
由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.6、C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.7、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于中檔題.8、B【解析】
利用函數(shù)奇偶性可求得在時的解析式和,進而構(gòu)造出不等式求得結(jié)果.【詳解】為定義在上的奇函數(shù),.當時,,,為奇函數(shù),,由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數(shù)奇偶性的應(yīng)用,涉及到利用函數(shù)奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數(shù)在處有意義時,的情況.9、B【解析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.10、D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.11、B【解析】
求出復(fù)數(shù),得出其對應(yīng)點的坐標,確定所在象限.【詳解】由題意,對應(yīng)點坐標為,在第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.12、C【解析】
對分奇數(shù)、偶數(shù)進行討論,利用誘導(dǎo)公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,,則的值構(gòu)成的集合為.【點睛】本題考查三角式的化簡,誘導(dǎo)公式,分類討論,屬于基本題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意設(shè)前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數(shù)列,則公比,故.14、【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點睛】本題考查了等比數(shù)列定義,考查了對數(shù)的運算性質(zhì),考查了等比數(shù)列的通項公式,是中檔題.15、【解析】
由,解得,進而求出,即可得出結(jié)果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎(chǔ)知識;考查運算求解能力,屬于基礎(chǔ)題.16、【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數(shù)k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】
由已知利用正弦定理,同角三角函數(shù)基本關(guān)系式可求,結(jié)合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結(jié)合范圍,可求A,根據(jù)三角形的內(nèi)角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進而根據(jù)三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的余弦函數(shù)公式,三角形的內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.18、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系,設(shè),根據(jù)向量垂直關(guān)系計算得到答案.(2)計算平面的法向量為,為平面的一個法向量,再計算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標系.設(shè),則,所以.,因為,所以,即,解得,所以的長為4.(2)因為,所以,又,故.設(shè)為平面的法向量,則即取,解得,所以為平面的一個法向量.顯然,為平面的一個法向量,則,據(jù)圖可知,二面角的余弦值為.【點睛】本題考查了立體幾何中的線段長度,二面角,意在考查學(xué)生的計算能力和空間想象能力.19、(1)見解析(2)【解析】
(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結(jié),,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設(shè),則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設(shè)平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.20、(1),;(2)見解析【解析】
(1)消去t,得直線的普通方程,利用極坐標與普通方程互化公式得曲線的直角坐標方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因為,,所以曲線的直角坐標方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.【點睛】本題考查參數(shù)方程化普通方程,極坐標與普通方程互化,直線與圓的位置關(guān)系,是中檔題21、(1);(2)或.【解析】
(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設(shè)直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關(guān)系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設(shè)方程為,聯(lián)立,消去得,,,設(shè),,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關(guān)系,要熟練應(yīng)用根與系數(shù)關(guān)系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.22、(1)證明見詳解;(2)【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點存在定理可知有唯一零點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高校教師提升學(xué)業(yè)評價素養(yǎng)的策略及實施路徑
- 2025年移動應(yīng)用程序開發(fā)與設(shè)計考試試題及答案
- 2025年文化產(chǎn)業(yè)管理專業(yè)畢業(yè)生考試試題及答案
- 2025年社會政策與社會保障專業(yè)知識測試卷及答案
- 2025年金融分析師職業(yè)資格考試試卷及答案
- 2025年計算機網(wǎng)絡(luò)安全考試試題及答案
- 2025年供應(yīng)鏈金融與風(fēng)險控制的綜合能力考試題及答案
- 特價餐具倉庫管理制度
- 特殊手術(shù)麻醉管理制度
- 特殊環(huán)節(jié)瓦斯管理制度
- 臨商銀行股份有限公司招聘筆試真題2024
- 近代史第三章試題及答案
- (完整版)社區(qū)工作者考試題含完整答案
- 地理●甘肅卷丨2024年甘肅省普通高中學(xué)業(yè)水平等級性考試高考地理真題試卷及答案
- 吊裝-運輸方案(3篇)
- 【8道期末】安徽省蕪湖市無為市2023-2024學(xué)年八年級下學(xué)期期末道德與法治試題(含解析)
- 2025年鋼絲材料項目市場調(diào)查研究報告
- 敘事護理分享課件
- 2025國家開放大學(xué)《員工勞動關(guān)系管理》形考任務(wù)1234答案
- 2025年湖北省新高考信息卷(一)物理試題及答案
- 部編版小學(xué)語文《十六年前的回憶》評課稿
評論
0/150
提交評論