




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第一篇熱點、難點突破篇專題04導(dǎo)數(shù)的基本應(yīng)用(講)真題體驗感悟高考1.(2022·全國·高考真題(理))當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最大值SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】B【分析】根據(jù)題意可知SKIPIF1<0,SKIPIF1<0即可解得SKIPIF1<0,再根據(jù)SKIPIF1<0即可解出.【詳解】因為函數(shù)SKIPIF1<0定義域為SKIPIF1<0,所以依題可知,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,SKIPIF1<0時取最大值,滿足題意,即有SKIPIF1<0.故選:B.2.(2022·全國·高考真題(文))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最小值、最大值分別為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用導(dǎo)數(shù)求得SKIPIF1<0的單調(diào)區(qū)間,從而判斷出SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值和最大值.【詳解】SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0上SKIPIF1<0,即SKIPIF1<0單調(diào)遞增;在區(qū)間SKIPIF1<0上SKIPIF1<0,即SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,最大值為SKIPIF1<0.故選:D3.(2022·全國·高考真題(理))已知SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0結(jié)合三角函數(shù)的性質(zhì)可得SKIPIF1<0;構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)可得SKIPIF1<0,即可得解.【詳解】[方法一]:構(gòu)造函數(shù)因為當(dāng)SKIPIF1<0故SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0;設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選A[方法二]:不等式放縮因為當(dāng)SKIPIF1<0,取SKIPIF1<0得:SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,且SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,及SKIPIF1<0此時SKIPIF1<0,SKIPIF1<0故SKIPIF1<0SKIPIF1<0,故SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,故選A[方法三]:泰勒展開設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,計算得SKIPIF1<0,故選A.[方法四]:構(gòu)造函數(shù)因為SKIPIF1<0,因為當(dāng)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:A.[方法五]:【最優(yōu)解】不等式放縮因為SKIPIF1<0,因為當(dāng)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;因為當(dāng)SKIPIF1<0,取SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.故選:A.【整體點評】方法4:利用函數(shù)的單調(diào)性比較大小,是常見思路,難點在于構(gòu)造合適的函數(shù),屬于通性通法;方法5:利用二倍角公式以及不等式SKIPIF1<0放縮,即可得出大小關(guān)系,屬于最優(yōu)解.4.(2021·全國·高考真題)若過點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】解法一:根據(jù)導(dǎo)數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫出曲線SKIPIF1<0的圖象,根據(jù)直觀即可判定點SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時才可以作出兩條切線.【詳解】在曲線SKIPIF1<0上任取一點SKIPIF1<0,對函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,所以,曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,由題意可知,點SKIPIF1<0在直線SKIPIF1<0上,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,所以,SKIPIF1<0,由題意可知,直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個交點,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖所示:由圖可知,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個交點.故選:D.解法二:畫出函數(shù)曲線SKIPIF1<0的圖象如圖所示,根據(jù)直觀即可判定點SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時才可以作出兩條切線.由此可知SKIPIF1<0.故選:D.【點睛】解法一是嚴格的證明求解方法,其中的極限處理在中學(xué)知識范圍內(nèi)需要用到指數(shù)函數(shù)的增長特性進行估計,解法二是根據(jù)基于對指數(shù)函數(shù)的圖象的清晰的理解與認識的基礎(chǔ)上,直觀解決問題的有效方法.5.(2022·全國·高考真題(文))已知函數(shù)SKIPIF1<0,曲線SKIPIF1<0在點SKIPIF1<0處的切線也是曲線SKIPIF1<0的切線.(1)若SKIPIF1<0,求a;(2)求a的取值范圍.【答案】(1)3(2)SKIPIF1<0【分析】(1)先由SKIPIF1<0上的切點求出切線方程,設(shè)出SKIPIF1<0上的切點坐標,由斜率求出切點坐標,再由函數(shù)值求出SKIPIF1<0即可;(2)設(shè)出SKIPIF1<0上的切點坐標,分別由SKIPIF1<0和SKIPIF1<0及切點表示出切線方程,由切線重合表示出SKIPIF1<0,構(gòu)造函數(shù),求導(dǎo)求出函數(shù)值域,即可求得SKIPIF1<0的取值范圍.(1)由題意知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,設(shè)該切線與SKIPIF1<0切于點SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;(2)SKIPIF1<0,則SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,整理得SKIPIF1<0,設(shè)該切線與SKIPIF1<0切于點SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則切線方程為SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0變化時,SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<01SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<00SKIPIF1<00SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0則SKIPIF1<0的值域為SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0.總結(jié)規(guī)律預(yù)測考向(一)規(guī)律與預(yù)測1.高考對本部分的要求一般有三個層次:第一層次主要考查求導(dǎo)公式,求導(dǎo)法則與導(dǎo)數(shù)的幾何意義;第二層次是導(dǎo)數(shù)的簡單應(yīng)用,包括求函數(shù)的單調(diào)區(qū)間、極值、最值等;第三層次是綜合考查,如研究函數(shù)零點、證明不等式、恒成立問題、求參數(shù)等,包括解決應(yīng)用問題,將導(dǎo)數(shù)內(nèi)容和傳統(tǒng)內(nèi)容中有關(guān)不等式、數(shù)列及函數(shù)單調(diào)性有機結(jié)合,設(shè)計綜合題.2.導(dǎo)數(shù)的計算和幾何意義是高考命題的熱點,多以選擇題、填空題形式考查,難度較小.3.應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值多在選擇題、填空題靠后的位置考查,難度中等偏上,屬綜合性問題.4.涉及導(dǎo)數(shù)的幾何意義、單調(diào)性、極(最)值的求參數(shù)取值范圍問題,是??碱}型.(二)本專題考向展示考點突破典例分析考向一導(dǎo)數(shù)的幾何意義【核心知識】1.基本初等函數(shù)的導(dǎo)數(shù)公式原函數(shù)導(dǎo)函數(shù)f(x)=c(c為常數(shù))f′(x)=0f(x)=xn(n∈Q*)f′(x)=nxn-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=axf′(x)=axlnaf(x)=exf′(x)=exf(x)=logaxf′(x)=eq\f(1,xlna)f(x)=lnxf′(x)=eq\f(1,x)2.導(dǎo)數(shù)的運算法則(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)(g(x)≠0).3.函數(shù)f(x)在x0處的導(dǎo)數(shù)是曲線f(x)在點P(x0,f(x0))處的切線的斜率,曲線f(x)在點P處的切線的斜率k=f′(x0),相應(yīng)的切線方程為y-f(x0)=f′(x0)·(x-x0).警示:求曲線的切線方程時,要注意是在點P處的切線還是過點P的切線,前者點P為切點,后者點P不一定為切點.【典例分析】典例1.(2022·貴州遵義·高三期中(理))若直線SKIPIF1<0與曲線SKIPIF1<0相切,則切點的坐標為_____________.【答案】SKIPIF1<0【分析】設(shè)切點為SKIPIF1<0,求出函數(shù)的導(dǎo)函數(shù),即可得到方程組,解得即可.【詳解】解:設(shè)切點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴切點坐標為SKIPIF1<0.故答案為:SKIPIF1<0典例2.(2021·全國·高考真題)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0和點SKIPIF1<0的兩條切線互相垂直,且分別交y軸于M,N兩點,則SKIPIF1<0取值范圍是_______.【答案】SKIPIF1<0【分析】結(jié)合導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,結(jié)合直線方程及兩點間距離公式可得SKIPIF1<0,SKIPIF1<0,化簡即可得解.【詳解】由題意,SKIPIF1<0,則SKIPIF1<0,所以點SKIPIF1<0和點SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點睛】關(guān)鍵點點睛:解決本題的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義轉(zhuǎn)化條件SKIPIF1<0,消去一個變量后,運算即可得解.典例3.(2019·江蘇·高考真題)在平面直角坐標系SKIPIF1<0中,P是曲線SKIPIF1<0上的一個動點,則點P到直線x+y=0的距離的最小值是_____.【答案】4.【分析】將原問題轉(zhuǎn)化為切點與直線之間的距離,然后利用導(dǎo)函數(shù)確定切點坐標可得最小距離【詳解】當(dāng)直線SKIPIF1<0平移到與曲線SKIPIF1<0相切位置時,切點Q即為點P到直線SKIPIF1<0的距離最小.由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即切點SKIPIF1<0,則切點Q到直線SKIPIF1<0的距離為SKIPIF1<0,故答案為SKIPIF1<0.【點睛】本題考查曲線上任意一點到已知直線的最小距離,滲透了直觀想象和數(shù)學(xué)運算素養(yǎng).采取導(dǎo)數(shù)法和公式法,利用數(shù)形結(jié)合和轉(zhuǎn)化與化歸思想解題.【總結(jié)提升】1.求曲線y=f(x)的切線方程的三種類型及方法(1)已知切點P(x0,y0),求y=f(x)過點P的切線方程:求出切線的斜率f′(x0),由點斜式寫出方程.(2)已知切線的斜率為k,求y=f(x)的切線方程:設(shè)切點P(x0,y0),通過方程k=f′(x0)解得x0,再由點斜式寫出方程.(3)已知切線上一點(非切點),求y=f(x)的切線方程:設(shè)切點P(x0,y0),利用導(dǎo)數(shù)求得切線斜率f′(x0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點斜式或兩點式寫出方程.2.一些距離類最值,可以轉(zhuǎn)化為求一條直線上的點到一條曲線上的點的最小值,此時與已知直線平行的曲線的切線到已知直線的距離即為最小值.考向二利用導(dǎo)數(shù)的幾何意義求參數(shù)【核心知識】主要涉及公切線問題、兩直線位置關(guān)系問題、切點坐標、切線的斜率(切線方程)問題以及與切線相關(guān)的距離問題.【典例分析】典例4.(2022·河南·一模(理))已知曲線SKIPIF1<0在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則實數(shù)SKIPIF1<0的值為(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)導(dǎo)數(shù)幾何意義和垂直關(guān)系可得SKIPIF1<0,解方程即可.【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在點SKIPIF1<0處的切線與SKIPIF1<0垂直,SKIPIF1<0,解得:SKIPIF1<0.故選:A.典例5.(2021·全國·高考真題)若過點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】解法一:根據(jù)導(dǎo)數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫出曲線SKIPIF1<0的圖象,根據(jù)直觀即可判定點SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時才可以作出兩條切線.【詳解】在曲線SKIPIF1<0上任取一點SKIPIF1<0,對函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,所以,曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,由題意可知,點SKIPIF1<0在直線SKIPIF1<0上,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,所以,SKIPIF1<0,由題意可知,直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個交點,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖所示:由圖可知,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0的圖象有兩個交點.故選:D.解法二:畫出函數(shù)曲線SKIPIF1<0的圖象如圖所示,根據(jù)直觀即可判定點SKIPIF1<0在曲線下方和SKIPIF1<0軸上方時才可以作出兩條切線.由此可知SKIPIF1<0.故選:D.典例6.(2022·全國·高考真題)若曲線SKIPIF1<0有兩條過坐標原點的切線,則a的取值范圍是___________.【答案】SKIPIF1<0【分析】設(shè)出切點橫坐標SKIPIF1<0,利用導(dǎo)數(shù)的幾何意義求得切線方程,根據(jù)切線經(jīng)過原點得到關(guān)于SKIPIF1<0的方程,根據(jù)此方程應(yīng)有兩個不同的實數(shù)根,求得SKIPIF1<0的取值范圍.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,設(shè)切點為SKIPIF1<0,則SKIPIF1<0,切線斜率SKIPIF1<0,切線方程為:SKIPIF1<0,∵切線過原點,∴SKIPIF1<0,整理得:SKIPIF1<0,∵切線有兩條,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0【總結(jié)提升】利用導(dǎo)數(shù)的幾何意義求參數(shù)的基本方法利用切點的坐標、切線的斜率、切線方程等得到關(guān)于參數(shù)的方程(組)或者參數(shù)滿足的不等式(組),進而求出參數(shù)的值或取值范圍.考向三利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性【核心知識】導(dǎo)數(shù)與單調(diào)性的關(guān)系1.f′(x)>0是f(x)為增函數(shù)的充分不必要條件,如函數(shù)f(x)=x3在(-∞,+∞)上單調(diào)遞增,但f′(x)≥0;2.f′(x)≥0是f(x)為增函數(shù)的必要不充分條件,當(dāng)函數(shù)在某個區(qū)間內(nèi)恒有f′(x)=0時,則f(x)為常數(shù),函數(shù)不具有單調(diào)性.【典例分析】典例7.(2022·全國·高考真題)設(shè)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】構(gòu)造函數(shù)SKIPIF1<0,導(dǎo)數(shù)判斷其單調(diào)性,由此確定SKIPIF1<0的大小.【詳解】方法一:構(gòu)造法設(shè)SKIPIF1<0,因為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故選:C.方法二:比較法解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;②SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0【注:此類問題已連年考查】典例8.(2022·廣西北?!ひ荒#ㄎ模┖瘮?shù)SKIPIF1<0的增區(qū)間為____________.【答案】SKIPIF1<0##SKIPIF1<0【分析】解不等式SKIPIF1<0即得解.【詳解】由題得SKIPIF1<0,可得SKIPIF1<0.故函數(shù)的增區(qū)間為SKIPIF1<0.故答案為:SKIPIF1<0典例9.(2021·全國·高考真題(文))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0的圖象與SKIPIF1<0軸沒有公共點,求a的取值范圍.【答案】(1)SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號后可得函數(shù)的單調(diào)性.(2)根據(jù)SKIPIF1<0及(1)的單調(diào)性性可得SKIPIF1<0,從而可求a的取值范圍.【詳解】(1)函數(shù)的定義域為SKIPIF1<0,又SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0.(2)因為SKIPIF1<0且SKIPIF1<0的圖與SKIPIF1<0軸沒有公共點,所以SKIPIF1<0的圖象在SKIPIF1<0軸的上方,由(1)中函數(shù)的單調(diào)性可得SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0.【點睛】方法點睛:不等式的恒成立問題,往往可轉(zhuǎn)化為函數(shù)的最值的符號來討論,也可以參變分離后轉(zhuǎn)化不含參數(shù)的函數(shù)的最值問題,轉(zhuǎn)化中注意等價轉(zhuǎn)化.【規(guī)律方法】1.求函數(shù)的單調(diào)區(qū)間,只需在函數(shù)的定義域內(nèi)解(證)不等式SKIPIF1<0(或SKIPIF1<0).2.利用導(dǎo)數(shù)比較大小或解不等式,常常要構(gòu)造新函數(shù),把比較大小或求解不等式的問題轉(zhuǎn)化為利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的問題,再由單調(diào)性比較大小或解不等式.常見構(gòu)造的輔助函數(shù)有:g(x)=xf(x),g(x)=SKIPIF1<0,g(x)=exf(x),g(x)=SKIPIF1<0,g(x)=f(x)lnx,g(x)=SKIPIF1<0等.3.溫馨提醒:(1)在利用導(dǎo)數(shù)討論函數(shù)的單調(diào)區(qū)間時,首先要確定函數(shù)的定義域.(2)單調(diào)區(qū)間的劃分要注意對導(dǎo)數(shù)等于零的點的確認.(3)所求函數(shù)的單調(diào)區(qū)間不止一個,這些區(qū)間之間不能用并集“∪”及“或”連接,只能用“,”“和”字隔開.考向四由函數(shù)的單調(diào)性求參數(shù)取值范圍【核心知識】(1)可導(dǎo)函數(shù)在區(qū)間(a,b)上單調(diào),實際上就是在該區(qū)間上f′(x)≥0(或f′(x)≤0)恒成立,得到關(guān)于參數(shù)的不等式,從而轉(zhuǎn)化為求函數(shù)的最值問題,求參數(shù)的取值范圍;(2)可導(dǎo)函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f′(x)>0(或f′(x)<0)在該區(qū)間上存在解集,即f′(x)max>0(或f′(x)min<0)在該區(qū)間上有解,從而轉(zhuǎn)化為不等式問題,求參數(shù)的取值范圍.【典例分析】典例10.(2022·上海市進才中學(xué)高三期中)已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則實數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0.【分析】求導(dǎo)后得到SKIPIF1<0在SKIPIF1<0上恒成立,參變分離后得到SKIPIF1<0在SKIPIF1<0上恒成立,利用導(dǎo)函數(shù)求出SKIPIF1<0,從而求出實數(shù)SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0,SKIPIF1<0,故只需SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0在SKIPIF1<0上恒成立,其中SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.典例11.(2022·陜西·蒲城縣蒲城中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0在SKIPIF1<0上不單調(diào),則SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【分析】結(jié)合函數(shù)的導(dǎo)數(shù)討論單調(diào)性,確定函數(shù)在SKIPIF1<0上既有增區(qū)間又有減區(qū)間即可求解.【詳解】由題可知,SKIPIF1<0,令SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0恒成立,即SKIPIF1<0恒成立,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,不滿足題意;若SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以由零點的唯一性定理可知,SKIPIF1<0在SKIPIF1<0必定存在唯一的零點記為SKIPIF1<0,所以當(dāng)SKIPIF1<0時SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0時單調(diào)遞增,SKIPIF1<0時單調(diào)遞減,滿足題意;綜上得SKIPIF1<0,故答案為:SKIPIF1<0.典例12.(2019·北京·高考真題(理))設(shè)函數(shù)f(x)=ex+ae?x(a為常數(shù)).若f(x)為奇函數(shù),則a=________;若f(x)是R上的增函數(shù),則a的取值范圍是___________.【答案】
-1;
SKIPIF1<0.【分析】首先由奇函數(shù)的定義得到關(guān)于SKIPIF1<0的恒等式,據(jù)此可得SKIPIF1<0的值,然后利用導(dǎo)函數(shù)的解析式可得a的取值范圍.【詳解】若函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,SKIPIF1<0對任意的SKIPIF1<0恒成立.若函數(shù)SKIPIF1<0是SKIPIF1<0上的增函數(shù),則SKIPIF1<0恒成立,SKIPIF1<0.即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0【總結(jié)提升】1.利用單調(diào)性確定參數(shù)的范圍.解答過程中,需利用轉(zhuǎn)化與化歸思想,轉(zhuǎn)化成恒成立問題.應(yīng)用條件SKIPIF1<0(或SKIPIF1<0),SKIPIF1<0恒成立,解出參數(shù)的取值范圍(一般可用不等式恒成立的理論求解),應(yīng)注意參數(shù)的取值范圍是SKIPIF1<0不恒等于0的參數(shù)的取值范圍.2.可導(dǎo)函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f′(x)>0(或f′(x)<0)在該區(qū)間上存在解集,從而轉(zhuǎn)化為不等式問題,求出參數(shù)的取值范圍.再驗證參數(shù)取“=”時f(x)是否滿足題意.3.若已知f(x)在區(qū)間I上的單調(diào)性,區(qū)間I上含有參數(shù)時,可先求出f(x)的單調(diào)區(qū)間,令I(lǐng)是其單調(diào)區(qū)間的子集,從而求出參數(shù)的取值范圍.4.函數(shù)SKIPIF1<0在SKIPIF1<0上不單調(diào),則轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上有解.5.特別提醒:(1)弄清參數(shù)對f′(x)符號的影響,分類討論要不重不漏.(2)已知函數(shù)單調(diào)性求參數(shù)范圍,要注意導(dǎo)數(shù)等于零的情況.考向五利用導(dǎo)數(shù)研究函數(shù)的極值、最值【核心知識】1.導(dǎo)數(shù)與極值、最值(1)函數(shù)f(x)在x0處的導(dǎo)數(shù)f′(x0)=0且f′(x)在x0附近“左正右負”?f(x)在x0處取極大值;函數(shù)f(x)在x0處的導(dǎo)數(shù)f′(x0)=0且f′(x)在x0附近“左負右正”?f(x)在x0處取極小值.(2)函數(shù)f(x)在一閉區(qū)間上的最大值是此函數(shù)在該區(qū)間上的極值與該區(qū)間端點處函數(shù)值中的“最大者”;函數(shù)f(x)在一閉區(qū)間上的最小值是此函數(shù)在該區(qū)間上的極值與該區(qū)間端點處函數(shù)值中的“最小者”.2.求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟(1)求函數(shù)在(a,b)內(nèi)的極值.(2)求函數(shù)在區(qū)間端點處的函數(shù)值f(a),f(b).(3)將函數(shù)f(x)的各極值與f(a),f(b)比較,其中最大的一個為最大值,最小的一個為最小值.【典例分析】典例13.【多選題】(2022·全國·高考真題)已知函數(shù)SKIPIF1<0的圖像關(guān)于點SKIPIF1<0中心對稱,則(
)A.SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減B.SKIPIF1<0在區(qū)間SKIPIF1<0有兩個極值點C.直線SKIPIF1<0是曲線SKIPIF1<0的對稱軸D.直線SKIPIF1<0是曲線SKIPIF1<0的切線【答案】AD【分析】根據(jù)三角函數(shù)的性質(zhì)逐個判斷各選項,即可解出.【詳解】由題意得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0.對A,當(dāng)SKIPIF1<0時,SKIPIF1<0,由正弦函數(shù)SKIPIF1<0圖象知SKIPIF1<0在SKIPIF1<0上是單調(diào)遞減;對B,當(dāng)SKIPIF1<0時,SKIPIF1<0,由正弦函數(shù)SKIPIF1<0圖象知SKIPIF1<0只有1個極值點,由SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0為函數(shù)的唯一極值點;對C,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0不是對稱軸;對D,由SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,從而得:SKIPIF1<0或SKIPIF1<0,所以函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線斜率為SKIPIF1<0,切線方程為:SKIPIF1<0即SKIPIF1<0.故選:AD.典例14.(2019·全國·高考真題(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時,記SKIPIF1<0在區(qū)間SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)見詳解;(2)SKIPIF1<0.【分析】(1)先求SKIPIF1<0的導(dǎo)數(shù),再根據(jù)SKIPIF1<0的范圍分情況討論函數(shù)單調(diào)性;(2)討論SKIPIF1<0的范圍,利用函數(shù)單調(diào)性進行最大值和最小值的判斷,最終求得SKIPIF1<0的取值范圍.【詳解】(1)對SKIPIF1<0求導(dǎo)得SKIPIF1<0.所以有當(dāng)SKIPIF1<0時,SKIPIF1<0區(qū)間上單調(diào)遞增,SKIPIF1<0區(qū)間上單調(diào)遞減,SKIPIF1<0區(qū)間上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0區(qū)間上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0區(qū)間上單調(diào)遞增,SKIPIF1<0區(qū)間上單調(diào)遞減,SKIPIF1<0區(qū)間上單調(diào)遞增.(2)若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0單調(diào)遞增,所以區(qū)間SKIPIF1<0上最小值為SKIPIF1<0.而SKIPIF1<0,故所以區(qū)間SKIPIF1<0上最大值為SKIPIF1<0.所以SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,求導(dǎo)SKIPIF1<0當(dāng)SKIPIF1<0時SKIPIF1<0從而SKIPIF1<0單調(diào)遞減.而SKIPIF1<0,所以SKIPIF1<0.即SKIPIF1<0的取值范圍是SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0單調(diào)遞增,所以區(qū)間SKIPIF1<0上最小值為SKIPIF1<0而SKIPIF1<0,故所以區(qū)間SKIPIF1<0上最大值為SKIPIF1<0.所以SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.即SKIPIF1<0的取值范圍是SKIPIF1<0.綜上得SKIPIF1<0的取值范圍是SKIPIF1<0.【特別提醒】1.不能忽略函數(shù)SKIPIF1<0的定義域.2.SKIPIF1<0是可導(dǎo)函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值的必要不充分條件.3.函數(shù)的極小值不一定比極大值小.4.若函數(shù)在區(qū)間SKIPIF1<0上有唯一的極值點,則這個極值點也是最值點,此結(jié)論在導(dǎo)數(shù)的實際應(yīng)用中經(jīng)常用到.考向六函數(shù)的極(最)值相關(guān)參數(shù)問題【核心知識】由函數(shù)極值(個數(shù))求參數(shù)的值或范圍.討論極值點有無(個數(shù))問題,轉(zhuǎn)化為討論f′(x)=0根的有無(個數(shù)).然后由已知條件列出方程或不等式求出參數(shù)的值或范圍,特別注意:極值點處的導(dǎo)數(shù)為0,而導(dǎo)數(shù)為0的點不一定是極值點,要檢驗極值點兩側(cè)導(dǎo)數(shù)是否異號.【典例分析】典例15.(2021·全國·高考真題(理))設(shè)SKIPIF1<0,若SKIPIF1<0為函數(shù)SKIPIF1<0的極大值點,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先考慮函數(shù)的零點情況,注意零點左右附近函數(shù)值是否變號,結(jié)合極大值點的性質(zhì),對進行分類討論,畫出圖象,即可得到SKIPIF1<0所滿足的關(guān)系,由此確定正確選項.【詳解】若SKIPIF1<0,則SKIPIF1<0為單調(diào)函數(shù),無極值點,不符合題意,故SKIPIF1<0.SKIPIF1<0有SKIPIF1<0和SKIPIF1<0兩個不同零點,且在SKIPIF1<0左右附近是不變號,在SKIPIF1<0左右附近是變號的.依題意,為函數(shù)的極大值點,SKIPIF1<0在SKIPIF1<0左右附近都是小于零的.當(dāng)SKIPIF1<0時,由SKIPIF1<0,SKIPIF1<0,畫出SKIPIF1<0的圖象如下圖所示:由圖可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.當(dāng)SKIPIF1<0時,由SKIPIF1<0時,SKIPIF1<0,畫出SKIPIF1<0的圖象如下圖所示:由圖可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.綜上所述,SKIPIF1<0成立.故選:D典例16.(2022·廣東實驗中學(xué)高三階段練習(xí))設(shè)SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0有極值點,則SKIPIF1<0取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先對函數(shù)求導(dǎo),根據(jù)函數(shù)在區(qū)間有極值點,轉(zhuǎn)化為導(dǎo)函數(shù)有零點,再由零點存在定理列出不等式求解即可.【詳解】SKIPIF1<0,SKIPIF1<0為單調(diào)函數(shù),所以函數(shù)在區(qū)間SKIPIF1<0有極值點,即SKIPIF1<0,代入解得SKIPIF1<0,解得SKIPIF1<0取值范圍為SKIPIF1<0,故選:B.典例17.(2022·全國·高考真題(理))已知SKIPIF1<0和SKIPIF1<0分別是函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的極小值點和極大值點.若SKIPIF1<0,則a的取值范圍是____________.【答案】SKIPIF1<0【分析】法一:依題可知,方程SKIPIF1<0的兩個根為SKIPIF1<0,即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個不同的交點,構(gòu)造函數(shù)SKIPIF1<0,利用指數(shù)函數(shù)的圖象和圖象變換得到SKIPIF1<0的圖象,利用導(dǎo)數(shù)的幾何意義求得過原點的切線的斜率,根據(jù)幾何意義可得出答案.【詳解】[方法一]:【最優(yōu)解】轉(zhuǎn)化法,零點的問題轉(zhuǎn)為函數(shù)圖象的交點因為SKIPIF1<0,所以方程SKIPIF1<0的兩個根為SKIPIF1<0,即方程SKIPIF1<0的兩個根為SKIPIF1<0,即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個不同的交點,因為SKIPIF1<0分別是函數(shù)SKIPIF1<0的極小值點和極大值點,所以函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以當(dāng)時SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0圖象在SKIPIF1<0上方當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0圖象在SKIPIF1<0下方SKIPIF1<0,圖象顯然不符合題意,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,設(shè)過原點且與函數(shù)SKIPIF1<0的圖象相切的直線的切點為SKIPIF1<0,則切線的斜率為SKIPIF1<0,故切線方程為SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,則切線的斜率為SKIPIF1<0,因為函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個不同的交點,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,綜上所述,SKIPIF1<0的取值范圍為SKIPIF1<0.[方法二]:【通性通法】構(gòu)造新函數(shù),二次求導(dǎo)SKIPIF1<0=0的兩個根為SKIPIF1<0因為SKIPIF1<0分別是函數(shù)SKIPIF1<0的極小值點和極大值點,所以函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上遞減,在SKIPIF1<0上遞增,設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,此時若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,此時若有SKIPIF1<0和SKIPIF1<0分別是函數(shù)SKIPIF1<0且SKIPIF1<0的極小值點和極大值點,則SKIPIF1<0,不符合題意;若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,此時若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,令SKIPIF1<0,則SKIPIF1<0,此時若有SKIPIF1<0和SKIPIF1<0分別是函數(shù)SKIPIF1<0且SKIPIF1<0的極小值點和極大值點,且SKIPIF1<0,則需滿足SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0故SKIPIF1<0,所以SKIPIF1<0.【整體點評】法一:利用函數(shù)的零點與兩函數(shù)圖象交點的關(guān)系,由數(shù)形結(jié)合解出,突出“小題小做”,是該題的最優(yōu)解;法二:通過構(gòu)造新函數(shù),多次求導(dǎo)判斷單調(diào)性,根據(jù)極值點的大小關(guān)系得出不等式,解出即可,該法屬于通性通法.典例18.(2022·北京海淀·高三期中)已知函數(shù)SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0的極值點個數(shù)為__________;②若SKIPIF1<0恰有兩個極值點,則SKIPIF1<0的取值范圍是__________.【答案】
SKIPIF1<0
SKIPIF1<0【分析】①驗證分段處函數(shù)值可知SKIPIF1<0為連續(xù)函數(shù),由單調(diào)性可確定SKIPIF1<0和SKIPIF1<0是SKIPIF1<0的極值點,由此可得極值點個數(shù);②驗證分段處函數(shù)值可知SKIPIF1<0為連續(xù)函數(shù),根據(jù)一次函數(shù)和二次函數(shù)單調(diào)性可確定SKIPIF1<0和SKIPIF1<0必為SKIPIF1<0的兩個極值點,得到SKIPIF1<0;根據(jù)二次函數(shù)的單調(diào)性,結(jié)合極值點定義可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0;由此可得SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高校預(yù)算績效管理的技術(shù)創(chuàng)新與應(yīng)用
- 多學(xué)科融合下的經(jīng)管類課程教學(xué)創(chuàng)新探討
- 健康科技前沿:醫(yī)療廢棄物追溯管理的市場分析與策略建議
- 微創(chuàng)外科手術(shù)中麻醉的注意事項與操作技巧
- 幼兒園師德師風(fēng)專項治理自查整改措施
- 2025至2030住宅和商業(yè)泳池警報行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國自密實混凝土行業(yè)市場占有率及投資前景評估規(guī)劃報告
- 2025至2030中國自動扶梯行業(yè)深度研究及發(fā)展前景投資評估分析
- 2025至2030中國腺苷受體A3行業(yè)市場占有率及投資前景評估規(guī)劃報告
- 2025至2030中國肩袖加固裝置行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 垃圾處理焚燒培訓(xùn)課件
- 國家中小學(xué)智慧教育平臺培訓(xùn)專題講座
- GMP附錄-細胞治療產(chǎn)品
- 2025年中國烘焙食品行業(yè)發(fā)展深度分析及行業(yè)發(fā)展趨勢報告
- 專業(yè)燒烤店管理制度
- GB/T 45668-2025地下空間信息系統(tǒng)建設(shè)技術(shù)要求
- 2025江蘇省惠隆資產(chǎn)管理限公司招聘30人易考易錯模擬試題(共500題)試卷后附參考答案
- 招標代理服務(wù)服務(wù)方案
- 學(xué)術(shù)規(guī)范與論文寫作講述課件
- (新版)孤殘兒童試題庫(含答案)
- 普通生物學(xué)說課(張艷麗)
評論
0/150
提交評論