版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第三篇思想方法篇思想02分類與整合思想(練)一、單選題1.(2023·吉林·統(tǒng)考二模)已知點A,B,C為橢圓D的三個頂點,若SKIPIF1<0是正三角形,則D的離心率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先由題得到SKIPIF1<0,結(jié)合SKIPIF1<0,即可求得SKIPIF1<0.【詳解】無論橢圓焦點位于SKIPIF1<0軸或SKIPIF1<0軸,根據(jù)點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0的三個頂點,若SKIPIF1<0是正三角形,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即有SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:C.2.(2023春·湖南常德·高一漢壽縣第一中學(xué)??奸_學(xué)考試)SKIPIF1<0表示不超過x的最大整數(shù),已知函數(shù)SKIPIF1<0,有下列結(jié)論:①SKIPIF1<0的定義域為SKIPIF1<0;②SKIPIF1<0的值域為SKIPIF1<0;③SKIPIF1<0是偶函數(shù);④SKIPIF1<0不是周期函數(shù);⑤SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0.其中正確的結(jié)論個數(shù)是(
)A.3 B.2 C.1 D.0【答案】A【分析】直接根據(jù)解析式可知①正確;通過特殊值可知②和③不正確;根據(jù)周期函數(shù)的定義可知④正確;根據(jù)函數(shù)SKIPIF1<0的單調(diào)性可以判斷,可知⑤正確.【詳解】對于①,SKIPIF1<0的定義域為SKIPIF1<0,故①正確;對于②,當(dāng)SKIPIF1<0時,SKIPIF1<0,故②錯誤;對于③,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象不關(guān)于y軸對稱,則SKIPIF1<0不是偶函數(shù),故③錯誤;對于④,當(dāng)SKIPIF1<0時,SKIPIF1<0表示x的小數(shù)部分,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上是周期變化,當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0.SKIPIF1<0是減函數(shù),SKIPIF1<0在R上不是周期函數(shù),故④正確;對于⑤,當(dāng)SKIPIF1<0時,SKIPIF1<0,表示x的小數(shù)部分,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0是減函數(shù).故SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,故⑤正確.故①④⑤正確.故選:A.3.(2023秋·天津·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有四個不同的零點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則下列結(jié)論中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】作出函數(shù)SKIPIF1<0圖象,根據(jù)函數(shù)圖象得出4個零點的關(guān)系及范圍,進(jìn)而得出結(jié)論.【詳解】函數(shù)SKIPIF1<0的四個不同的零點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,就是函數(shù)SKIPIF1<0與SKIPIF1<0兩個圖象四個交點的橫坐標(biāo),作出函數(shù)SKIPIF1<0的圖象,對于A,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,結(jié)合圖象可知SKIPIF1<0,故A錯誤;結(jié)合圖象可知SKIPIF1<0,解得SKIPIF1<0,故B正確;又SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故C錯誤;根據(jù)二次函數(shù)的性質(zhì)和圖象得出SKIPIF1<0,所以SKIPIF1<0,故D錯誤;故選:B4.(2023·河南·校聯(lián)考模擬預(yù)測)已知向量SKIPIF1<0的夾角為SKIPIF1<0,且SKIPIF1<0是函數(shù)SKIPIF1<0的兩個零點.若SKIPIF1<0,則SKIPIF1<0(
)A.3 B.4 C.5 D.6【答案】A【分析】由題知SKIPIF1<0或SKIPIF1<0.,再根據(jù)向量垂直的數(shù)量積表示,數(shù)量積的運(yùn)算律分別討論求解即可.【詳解】解:因為函數(shù)SKIPIF1<0的兩個零點分別為2,3,所以SKIPIF1<0或SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0(舍去);當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,滿足SKIPIF1<0.綜上,SKIPIF1<0故選:A5.(2023秋·云南德宏·高三統(tǒng)考期末)已知函數(shù)SKIPIF1<0的周期為2,當(dāng)SKIPIF1<0時,SKIPIF1<0.如果SKIPIF1<0,那么SKIPIF1<0的零點個數(shù)是(
)A.3 B.4C.5 D.6【答案】C【分析】先將問題SKIPIF1<0的零點問題轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0的交點,分析出SKIPIF1<0的值域,由此判斷出零點個數(shù).【詳解】函數(shù)SKIPIF1<0的零點個數(shù)為函數(shù)SKIPIF1<0與SKIPIF1<0的圖象的交點的個數(shù),因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象沒有交點,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0.又函數(shù)SKIPIF1<0的周期為2,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象沒有交點,作函數(shù)SKIPIF1<0和函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象,觀察圖象可得兩函數(shù)圖象有5個交點,所以函數(shù)SKIPIF1<0的零點個數(shù)為5.故選:C.6.(2022秋·福建廈門·高三廈門一中??计谥校╇p曲線SKIPIF1<0:SKIPIF1<0的右焦點和虛軸上的一個端點分別為SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0為雙曲線SKIPIF1<0左支上一點,若SKIPIF1<0周長的最小值為SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意求得SKIPIF1<0,SKIPIF1<0的坐標(biāo),設(shè)出SKIPIF1<0,運(yùn)用雙曲線的定義可得SKIPIF1<0,則SKIPIF1<0的周長為SKIPIF1<0,運(yùn)用三點共線取得最小值,可得SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的關(guān)系,結(jié)合離心率公式,計算即可得到所求值.【詳解】解:由題意可得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,由雙曲線的定義可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的周長為SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共線,取得最小值,且為SKIPIF1<0,由題意可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故選:B.7.(2023·河北·高三河北衡水中學(xué)??茧A段練習(xí))若平面向量SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意分析可得點SKIPIF1<0的軌跡為以SKIPIF1<0為焦點的橢圓,結(jié)合橢圓的定義分析求解.【詳解】∵SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,故點SKIPIF1<0的軌跡為以SKIPIF1<0為焦點的橢圓,∴SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)點SKIPIF1<0為SKIPIF1<0的延長線與橢圓的交點SKIPIF1<0時等號成立,SKIPIF1<0,當(dāng)且僅當(dāng)點SKIPIF1<0為SKIPIF1<0的延長線與橢圓的交點SKIPIF1<0時等號成立,即SKIPIF1<0,故SKIPIF1<0.故選:D.8.(2023·安徽合肥·統(tǒng)考一模)已知線段PQ的中點為等邊三角形ABC的頂點A,且SKIPIF1<0,當(dāng)PQ繞點A轉(zhuǎn)動時,SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】以SKIPIF1<0點為原點,建立直角坐標(biāo)系,可知SKIPIF1<0兩點都是圓SKIPIF1<0上的動點,當(dāng)直線SKIPIF1<0斜率不存在時,可得SKIPIF1<0,直線SKIPIF1<0斜率存在時,可得到SKIPIF1<0或SKIPIF1<0,再討論SKIPIF1<0與SKIPIF1<0的大小關(guān)系,即可求解.【詳解】以SKIPIF1<0點為原點,以與SKIPIF1<0平行的直線為SKIPIF1<0軸,與SKIPIF1<0垂直的直線為SKIPIF1<0軸,建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0兩點都是圓SKIPIF1<0上的動點,當(dāng)直線SKIPIF1<0斜率不存在時,SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0當(dāng)直線SKIPIF1<0斜率不存在時,可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,當(dāng)SKIPIF1<0時,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0;同理,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,綜上所述,SKIPIF1<0的取值范圍是SKIPIF1<0,故答案選:D.二、多選題9.(2023秋·河南鄭州·高一統(tǒng)考期末)已知實數(shù)a,b滿足等式SKIPIF1<0,下列式子可以成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)指數(shù)函數(shù)圖象分析判斷.【詳解】設(shè)SKIPIF1<0,分別作出SKIPIF1<0的函數(shù)圖象,如圖所示:當(dāng)SKIPIF1<0,則SKIPIF1<0,A成立;當(dāng)SKIPIF1<0,則SKIPIF1<0,B成立,C不成立;當(dāng)SKIPIF1<0時,則SKIPIF1<0,D成立.故選:ABD.10.(2023·廣東深圳·統(tǒng)考一模)已知拋物線C:SKIPIF1<0的準(zhǔn)線為SKIPIF1<0,直線SKIPIF1<0與C相交于A、B兩點,M為AB的中點,則(
)A.當(dāng)SKIPIF1<0時,以AB為直徑的圓與SKIPIF1<0相交B.當(dāng)SKIPIF1<0時,以AB為直徑的圓經(jīng)過原點OC.當(dāng)SKIPIF1<0時,點M到SKIPIF1<0的距離的最小值為2D.當(dāng)SKIPIF1<0時,點M到SKIPIF1<0的距離無最小值【答案】BC【分析】將直線SKIPIF1<0代入SKIPIF1<0,結(jié)合韋達(dá)定理求得SKIPIF1<0坐標(biāo)、點SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離SKIPIF1<0及SKIPIF1<0.當(dāng)SKIPIF1<0時,由SKIPIF1<0可判斷A;當(dāng)SKIPIF1<0時,由SKIPIF1<0可判斷B;當(dāng)SKIPIF1<0時,得SKIPIF1<0的關(guān)系式,代入SKIPIF1<0表達(dá)式,利用基本不等式可判斷C;當(dāng)SKIPIF1<0時,得SKIPIF1<0的關(guān)系式,代入SKIPIF1<0表達(dá)式,利用對勾函數(shù)的性質(zhì)可判斷D.【詳解】拋物線SKIPIF1<0,準(zhǔn)線SKIPIF1<0方程是SKIPIF1<0,直線SKIPIF1<0代入SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,點SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,點SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離SKIPIF1<0,則以AB為直徑的圓與SKIPIF1<0相切,故A錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,則以AB為直徑的圓經(jīng)過原點O,故B正確;當(dāng)SKIPIF1<0時,即SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,故C正確;當(dāng)SKIPIF1<0時,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由對勾函數(shù)的性質(zhì)得,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,故當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值SKIPIF1<0,故D錯誤.故選:BC.11.(2023·遼寧·校聯(lián)考模擬預(yù)測)已知F是拋物線SKIPIF1<0的焦點,點SKIPIF1<0在拋物線W上,過點F的兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0分別與拋物線W交于B,C和D,E,過點A分別作SKIPIF1<0,SKIPIF1<0的垂線,垂足分別為M,N,則(
)A.四邊形SKIPIF1<0面積的最大值為2B.四邊形SKIPIF1<0周長的最大值為SKIPIF1<0C.SKIPIF1<0為定值SKIPIF1<0D.四邊形SKIPIF1<0面積的最小值為32【答案】ACD【分析】根據(jù)給定條件,求出拋物線SKIPIF1<0的方程,確定四邊形SKIPIF1<0形狀,利用勾股定理及均值不等式計算判斷A,B;設(shè)出直線SKIPIF1<0的方程,與拋物線方程聯(lián)立,求出弦SKIPIF1<0長即可計算推理判斷C,D作答.【詳解】因為點SKIPIF1<0在拋物線SKIPIF1<0上,所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,拋物線SKIPIF1<0的焦點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以四邊形SKIPIF1<0面積的最大值為2,故A正確.由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以四邊形SKIPIF1<0周長的最大值為SKIPIF1<0,故B不正確.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0消x得SKIPIF1<0,方程SKIPIF1<0的判別式SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,同理得SKIPIF1<0,SKIPIF1<0,C正確.SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,此時SKIPIF1<0,故D正確.故選:ACD.12.(2022秋·福建廈門·高三廈門一中??计谥校┮阎襟wSKIPIF1<0的棱長為2(如圖所示),點SKIPIF1<0為線段SKIPIF1<0(含端點)上的動點,由點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0確定的平面為SKIPIF1<0,則下列說法正確的是(
)A.平面SKIPIF1<0截正方體的截面始終為四邊形B.點SKIPIF1<0運(yùn)動過程中,三棱錐SKIPIF1<0的體積為定值C.平面SKIPIF1<0截正方體的截面面積的最大值為SKIPIF1<0D.三棱錐SKIPIF1<0的外接球表面積的取值范圍為SKIPIF1<0【答案】BCD【分析】根據(jù)線面平行的判定定理,運(yùn)動變化思想,函數(shù)思想,即可分別求解.【詳解】對A選項,當(dāng)SKIPIF1<0與SKIPIF1<0點重合時,平面SKIPIF1<0截正方體的截面為SKIPIF1<0,錯誤;對B選項,∵SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又點SKIPIF1<0為線段SKIPIF1<0(含端點)上的動點,∴SKIPIF1<0到平面SKIPIF1<0的距離為定值,又SKIPIF1<0的面積也為定值,∴三棱錐SKIPIF1<0的體積為定值,正確;對C選項,當(dāng)SKIPIF1<0由SKIPIF1<0移動到SKIPIF1<0的過程中,利用平面的基本性質(zhì),延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,所以,從SKIPIF1<0到SKIPIF1<0之間,平面SKIPIF1<0截正方體的截面為SKIPIF1<0為等腰梯形,且SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0重合時,截面為矩形SKIPIF1<0,此時面積最大為SKIPIF1<0,正確;對D選項,如圖,分別取左右側(cè)面的中心SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0垂直于左右側(cè)面,根據(jù)對稱性易知:三棱錐SKIPIF1<0的外接球的球心SKIPIF1<0在線段SKIPIF1<0上,設(shè)SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,又易知SKIPIF1<0,外接球SKIPIF1<0的半徑SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中,由勾股定理可得:SKIPIF1<0,兩式相減得:SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的對稱軸為SKIPIF1<0,的開口向上,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,最小值為SKIPIF1<0,最大值為SKIPIF1<0,即SKIPIF1<0,∴三棱錐SKIPIF1<0的外接球表面積SKIPIF1<0,正確.故選:BCD.三、填空題13.(2023·陜西咸陽·校考一模)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為______.【答案】SKIPIF1<0【分析】由題意結(jié)合函數(shù)的解析式分類討論求解不等式的解集即可.【詳解】解:當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,綜上,不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<014.(2023秋·云南德宏·高三統(tǒng)考期末)已知橢圓C:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓的左右焦點.若點P是橢圓上的一個動點,點A的坐標(biāo)為(2,1),則SKIPIF1<0的范圍為_____.【答案】SKIPIF1<0【分析】利用橢圓定義可得SKIPIF1<0,再根據(jù)三角形三邊長的關(guān)系可知,當(dāng)SKIPIF1<0共線時即可取得SKIPIF1<0最值.【詳解】由橢圓標(biāo)準(zhǔn)方程可知SKIPIF1<0,SKIPIF1<0又點P在橢圓上,根據(jù)橢圓定義可得SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0易知SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點共線時等號成立;又SKIPIF1<0,所以SKIPIF1<0;即SKIPIF1<0的范圍為SKIPIF1<0.故答案為:SKIPIF1<015.(2022秋·上海青浦·高三統(tǒng)考階段練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,若動點SKIPIF1<0到兩直線SKIPIF1<0和SKIPIF1<0的距離之和為SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】8【分析】由已知可知兩直線SKIPIF1<0,取SKIPIF1<0在SKIPIF1<0的右側(cè)時,分別過SKIPIF1<0作兩直線的垂線,結(jié)合幾何性質(zhì)確定SKIPIF1<0點軌跡,即可求得SKIPIF1<0的最大值,其他位置同理可得.【詳解】若動點SKIPIF1<0到兩直線SKIPIF1<0和SKIPIF1<0的距離之和為SKIPIF1<0,SKIPIF1<0交點為SKIPIF1<0的斜率分別為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0的右側(cè)時,過SKIPIF1<0分別向SKIPIF1<0引垂線,垂足分別為SKIPIF1<0,那么SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸的平行線,與SKIPIF1<0交點為SKIPIF1<0如圖,則SKIPIF1<0,所以SKIPIF1<0,其它位置同理,那么點SKIPIF1<0軌跡為正方形SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,即SKIPIF1<0取得最大值8.故答案為:8.16.(2022·北京·統(tǒng)考模擬預(yù)測)若函數(shù)SKIPIF1<0的極小值點為1,則實數(shù)a的取值范圍是__________,【答案】SKIPIF1<0【分析】令SKIPIF1<0得SKIPIF1<0,討論SKIPIF1<0與SKIPIF1<0的大小關(guān)系,確定1是否為極值點即可.【詳解】由SKIPIF1<0得,SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0有兩個不同的根,令SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0SKIPIF1<0單調(diào)遞增,①當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0的大致圖象如圖1:當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的極大值點,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以1為SKIPIF1<0的極小值點,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的極大值點,故SKIPIF1<0時滿足題意.②當(dāng)SKIPIF1<0時,SKIPIF1<0是SKIPIF1<0的最大根,SKIPIF1<0的大致圖象如圖2:SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時SKIPIF1<0,所以1為SKIPIF1<0的極大值點,此時不滿足題意.③當(dāng)SKIPIF1<0時,SKIPIF1<0的大致圖象如圖3圖4,SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以1為SKIPIF1<0的極大值點,此時不滿足題意.④當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以1為SKIPIF1<0的極大值點,此時不滿足題意.綜上:SKIPIF1<0的取值范圍:SKIPIF1<0,故答案為:SKIPIF1<0【點睛】已知SKIPIF1<0為極值點求參數(shù)方法:由極值點定義知SKIPIF1<0,(1)若由SKIPIF1<0可以求得參數(shù)值,再證明SKIPIF1<0為函數(shù)的極值點;(2)若SKIPIF1<0恒成立,求不到參數(shù)值,則SKIPIF1<0為變號零點,通過含參討論確保SKIPIF1<0兩側(cè)的單調(diào)性不同求得參數(shù)值或范圍.(相似題2018新課標(biāo)3卷理21題)四、解答題17.(2022·北京·統(tǒng)考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,求SKIPIF1<0的最值.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)最小值為SKIPIF1<0,最大值為1【分析】(1)利用累加法和等差數(shù)列的通項公式可求SKIPIF1<0,由SKIPIF1<0及SKIPIF1<0可求SKIPIF1<0;(2)利用錯位相減法求出SKIPIF1<0,分情況討論可得答案.【詳解】(1)由己知得,當(dāng)SKIPIF1<0時SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,也滿足上式.所以SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,符合上式當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,也符合上式,綜上,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0.(2)由(1)可得:SKIPIF1<0∴SKIPIF1<0SKIPIF1<0兩式相減:SKIPIF1<0SKIPIF1<0∴SKIPIF1<0當(dāng)n為奇數(shù)時,不妨設(shè)SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0單調(diào)遞減,SKIPIF1<0當(dāng)n為偶數(shù)時,不妨設(shè)SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0單調(diào)遞增,SKIPIF1<0∴SKIPIF1<0的最小值為SKIPIF1<0,最大值為1.18.(2023春·浙江·高三校聯(lián)考開學(xué)考試)設(shè)數(shù)列SKIPIF1<0的前n項和SKIPIF1<0滿足:SKIPIF1<0,記SKIPIF1<0.(1)證明:SKIPIF1<0是等比數(shù)列,并求SKIPIF1<0的通項公式;(2)求SKIPIF1<0的最大值.【答案】(1)證明見解析,SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)SKIPIF1<0與SKIPIF1<0之間的關(guān)系可得,SKIPIF1<0,進(jìn)而可推得SKIPIF1<0,即SKIPIF1<0,求出SKIPIF1<0,可得出SKIPIF1<0,即可得出SKIPIF1<0,進(jìn)而得出SKIPIF1<0;(2)作差可得SKIPIF1<0,通過研究函數(shù)SKIPIF1<0的性質(zhì),即可得出SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,進(jìn)而求出SKIPIF1<0的值,即可得出答案.【詳解】(1)由已知可得,SKIPIF1<0①,當(dāng)SKIPIF1<0時,有SKIPIF1<0②,①-②整理可得,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,則SKIPIF1<0;(2)由(1)可知,SKIPIF1<0,所以,當(dāng)SKIPIF1<0時,有SKIPIF1<0,所以要求SKIPIF1<0的最大值,先比較SKIPIF1<0與SKIPIF1<0的大小,令SKIPIF1<0,則SKIPIF1<0,根據(jù)函數(shù)的單調(diào)性,可知當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增.且SKIPIF1<0時,有SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,有SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增.又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0時,有SKIPIF1<0,即SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0最大,此時SKIPIF1<0.19.(2023春·江西宜春·高三江西省豐城中學(xué)??奸_學(xué)考試)如圖,已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,其左、右頂點分別為SKIPIF1<0.過點SKIPIF1<0的直線SKIPIF1<0與該橢圓相交于SKIPIF1<0兩點.(1)求橢圓SKIPIF1<0的方程;(2)設(shè)直線SKIPIF1<0與SKIPIF1<0的斜率分別為SKIPIF1<0.試問:是否存在實數(shù)SKIPIF1<0,使得SKIPIF1<0?若存在,求SKIPIF1<0的值;若不存在,請說明理由.【答案】(1)SKIPIF1<0;(2)存在,SKIPIF1<0.【分析】(1)根據(jù)題意求出SKIPIF1<0,即可得解;(2)方法一:設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程,利用韋達(dá)定理可求得SKIPIF1<0兩點的坐標(biāo),再根據(jù)SKIPIF1<0三點共線,即可得出結(jié)論.方法二:根據(jù)當(dāng)直線SKIPIF1<0垂直于SKIPIF1<0軸時,得出SKIPIF1<0的值,在證明直線斜率不存在時,SKIPIF1<0也為這個值即可.【詳解】(1)依題意可知SKIPIF1<0,SKIPIF1<0,所以橢圓的方程為:SKIPIF1<0;(2)(方法一)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,同理,可解得點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0時,此時SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,此時SKIPIF1<0,由SKIPIF1<0三點共線,得SKIPIF1<0,化簡有SKIPIF1<0,由題知SKIPIF1<0同號,所以SKIPIF1<0,故存在SKIPIF1<0,使得成立.(方法二)當(dāng)直線SKIPIF1<0垂直于SKIPIF1<0軸時,SKIPIF1<0點的坐標(biāo)分別為SKIPIF1<0,所以此時直線與的斜率分別為SKIPIF1<0,有SKIPIF1<0,由此猜想:存在SKIPIF1<0滿足條件,下面證明猜想正確.當(dāng)直線SKIPIF1<0不垂直于SKIPIF1<0軸時,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0聯(lián)立方程組SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,由此可得猜想正確,故存在SKIPIF1<0,使得成立.【點睛】本題考查了橢圓的離心率及橢圓的方程,考查了直線與橢圓的位置關(guān)系的應(yīng)用,計算量較大,有一定的難度.20.(2022·北京·統(tǒng)考模擬預(yù)測)如圖所示,過原點O作兩條互相垂直的線OA,OB分別交拋物線SKIPIF1<0于A,B兩點,連接AB,交y軸于點P.(1)求點P的坐標(biāo);(2)證明:存在相異于點P的定點T,使得SKIPIF1<0恒成立,請求出點T的坐標(biāo),并求出SKIPIF1<0面積的最小值.【答案】(1)SKIPIF1<0;(2)證明見解析,SKIPIF1<0,8.【分析】(1)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立直線和拋物線方程得到韋達(dá)定理,化簡SKIPIF1<0即得解;(2)當(dāng)SKIPIF1<0與x軸平行時,SKIPIF1<0,設(shè)SKIPIF1<0,由題得SKIPIF1<0,化簡即得SKIPIF1<0.求出SKIPIF1<0,即得解.【詳解】(1)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的斜率必存在,設(shè)SKIPIF1<0與拋物線聯(lián)立可得SKIPIF1<0,∴SKIPIF1<0,可知:SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0.(2)由SKIPIF1<0,可知:SKIPIF1<0,當(dāng)SKIPIF1<0與x軸平行時,SKIPIF1<0,∴存在點T在y軸上,設(shè)SKIPIF1<0,SKIPIF1<0,∴TP為SKIPIF1<0的角平分線,有SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴存在SKIPIF1<0,使得:SKIPIF1<0恒成立,∴SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0軸時,SKIPIF1<0面積的最小值為8.21.(2023春·廣西柳州·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0恒成立,求實數(shù)k的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【分析】(1)求SKIPIF1<0的導(dǎo)函數(shù),對導(dǎo)函數(shù)中的參數(shù)SKIPIF1<0分類討論,在每種情況下通過導(dǎo)函數(shù)的正負(fù)得出函數(shù)的單調(diào)性;(2)將函數(shù)恒成立問題轉(zhuǎn)化為關(guān)于函數(shù)最值的不等式,解不等式得出參數(shù)取值范圍.【詳解】(1)SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;②當(dāng)SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減;③當(dāng)SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.(2)設(shè)SKIPIF1<0,則題意等價于SKIPIF1<0時,SKIPIF1<0恒成立,所以SKIPIF1<0,故SKIPIF1<0.SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0為增函數(shù);當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0為減函數(shù);當(dāng)SKIPIF1<0時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年商標(biāo)保護(hù)義務(wù)協(xié)議
- 2025年健身房特選設(shè)備訓(xùn)練服務(wù)協(xié)議
- 2025年基層金融質(zhì)押協(xié)議
- 2025年連帶責(zé)任保證合同(借款)
- 中小企業(yè)2024年期限勞動合同3篇
- 正規(guī)2025年度藝人經(jīng)紀(jì)合同3篇
- 二零二五年度足療技師外出服務(wù)安全協(xié)議范本
- 2025年度度假酒店委托運(yùn)營管理服務(wù)合同
- 二零二五年度汽車牌照租賃與車輛抵押貸款服務(wù)協(xié)議
- 2025年度門窗行業(yè)產(chǎn)品召回與質(zhì)量追溯合同電子版
- 江蘇省南京市協(xié)同體七校2024-2025學(xué)年高三上學(xué)期期中聯(lián)合考試英語試題答案
- 青島版二年級下冊三位數(shù)加減三位數(shù)豎式計算題200道及答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- GB/T 16288-2024塑料制品的標(biāo)志
- 麻風(fēng)病防治知識課件
- 干部職級晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實例:清單與計價樣本
- VOC廢氣治理工程中電化學(xué)氧化技術(shù)的研究與應(yīng)用
- 煤礦機(jī)電設(shè)備培訓(xùn)課件
評論
0/150
提交評論