吉林省洮南市第十中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
吉林省洮南市第十中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
吉林省洮南市第十中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
吉林省洮南市第十中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
吉林省洮南市第十中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省洮南市第十中學(xué)2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.由曲線圍成的封閉圖形的面積為()A. B. C. D.2.已知,則的值等于()A. B. C. D.3.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.4.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%5.若雙曲線:的一條漸近線方程為,則()A. B. C. D.6.將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關(guān)于直線對稱,則函數(shù)在上的值域是()A. B. C. D.7.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.8.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.9.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.410.設(shè)橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關(guān)于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.11.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,12.已知向量,,若,則與夾角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若在上單調(diào)遞減,則的取值范圍是_______14.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個零點,則的取值范圍是__________.15.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則16.若滿足約束條件,則的最小值是_________,最大值是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.18.(12分)數(shù)列的前項和為,且.數(shù)列滿足,其前項和為.(1)求數(shù)列與的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的零點個數(shù);(2)若在上單調(diào)遞增,且求c的最大值.20.(12分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當(dāng)時,.21.(12分)如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)求二面角的余弦值.22.(10分)如圖,四棱錐中,側(cè)面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時注意積分區(qū)間和被積函數(shù)的選取.2、A【解析】

由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學(xué)生對二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡單題3、B【解析】

求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.4、B【解析】試題分析:由題意故選B.考點:正態(tài)分布5、A【解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.6、D【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.7、D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運算的核心素養(yǎng)8、B【解析】

根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點睛】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.9、A【解析】

先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時,,當(dāng)即時,取等號,當(dāng)時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎(chǔ)題.10、C【解析】

連接,為的中位線,從而,且,進而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關(guān)于原點對稱的兩點,不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C【點睛】本題考查了橢圓的幾何性質(zhì),考查了運算求解能力,屬于基礎(chǔ)題.11、B【解析】

分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應(yīng)先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.12、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時,顯然,符合題意;當(dāng)時,在恒成立,∴,∴,故答案為:.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.14、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.15、-5【解析】

畫出x,y滿足的可行域,當(dāng)目標函數(shù)z=x-2y經(jīng)過點A時,z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標函數(shù)z=x-2y經(jīng)過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應(yīng)的直線時,要注意讓其斜率與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。16、06【解析】

作不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求出結(jié)果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當(dāng)直線過點時,軸上截距最大,即z取最小值,.當(dāng)直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【點睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結(jié)合是解決問題的基本方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標系,由已知求出線段長,得出各點坐標,用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標系,用空間向量法求空間角.18、(1),;(2).【解析】

(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求得數(shù)列的通項公式,再利用對數(shù)的運算性質(zhì)可得出數(shù)列的通項公式;(2)運用等差數(shù)列的求和公式,運用數(shù)列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當(dāng)時,,所以;當(dāng)時,,得,即,所以,數(shù)列是首項為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項為,公差為的等差數(shù)列,.,.所以.【點睛】本題考查數(shù)列的遞推式的運用,注意結(jié)合等比數(shù)列的定義和通項公式,考查數(shù)列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.19、(1)見解析(2)2【解析】

(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點問題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進而求解.【詳解】(1)當(dāng)時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時,;當(dāng)時,,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當(dāng)時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;當(dāng)或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;當(dāng)即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.(2)因為在上單調(diào)遞增,即在上恒成立,設(shè),則,①若,則,則在上單調(diào)遞減,顯然,在上不恒成立;②若,則,在上單調(diào)遞減,當(dāng)時,,故,單調(diào)遞減,不符合題意;③若,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,所以,由,得,設(shè),則,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導(dǎo)函數(shù)研究函數(shù)的零點問題,考查利用導(dǎo)函數(shù)求最值,考查運算能力與分類討論思想.20、(1)見解析(2)見解析【解析】

(1)求出,分別以當(dāng),,時,結(jié)合函數(shù)的單調(diào)性和最值判斷零點的個數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進而證明.【詳解】解析:(1),,當(dāng)時,,單調(diào)遞減,,,此時有1個零點;當(dāng)時,無零點;當(dāng)時,由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導(dǎo)易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當(dāng)時,;當(dāng)時,,∴.令,則,當(dāng)時,,當(dāng)時,,∴,∴,,∴,即.【點睛】本題考查了導(dǎo)數(shù)判斷函數(shù)零點問題,考查了運用導(dǎo)數(shù)證明不等式問題,考查了分類的數(shù)學(xué)思想.本題的難點在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論