




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省寧波華茂外國語學(xué)校2025屆高三第三次測評數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.2.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.3.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.4.函數(shù)y=sin2x的圖象可能是A. B.C. D.5.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.6.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.7.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.8.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.39.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.12010.“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關(guān)系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設(shè)成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是()A.這五年,出口總額之和比進口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進口增速最快D.這五年,出口增速前四年逐年下降11.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.512.函數(shù)的定義域為,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)與的圖象上存在關(guān)于軸對稱的點,則的取值范圍為_____.14.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.15.已知集合,,則_________.16.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學(xué)生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負責(zé)人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0018.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.19.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.20.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.21.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.22.(10分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現(xiàn)雙曲線的弦中點坐標時,可設(shè)弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關(guān)系.2、A【解析】
畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關(guān)于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.3、D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.4、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數(shù),排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).5、B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時,,令,在是增函數(shù),時,有一個零點,當(dāng)時,,令當(dāng)時,,在上單調(diào)遞增,當(dāng)時,,在上單調(diào)遞減,所以當(dāng)時,取得最大值,因為在上有3個零點,所以當(dāng)時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B【點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.7、A【解析】
求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.8、B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.9、C【解析】
觀察規(guī)律得根號內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號內(nèi)分母為分子的平方減1所以故選:C.【點睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】
根據(jù)統(tǒng)計圖中數(shù)據(jù)的含義進行判斷即可.【詳解】對A項,由統(tǒng)計圖可得,2015年出口額和進口額基本相等,而2016年到2019年出口額都大于進口額,則A正確;對B項,由統(tǒng)計圖可得,2015年出口額最少,則B正確;對C項,由統(tǒng)計圖可得,2019年進口增速都超過其余年份,則C正確;對D項,由統(tǒng)計圖可得,2015年到2016年出口增速是上升的,則D錯誤;故選:D【點睛】本題主要考查了根據(jù)條形統(tǒng)計圖和折線統(tǒng)計圖解決實際問題,屬于基礎(chǔ)題.11、B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.12、A【解析】
根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
兩函數(shù)圖象上存在關(guān)于軸對稱的點的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo),求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關(guān)于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設(shè)函數(shù),其導(dǎo)數(shù),又由,可得:當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導(dǎo)數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點問題的拓展.由于函數(shù)的零點就是方程的根,在研究方程的有關(guān)問題時,可以將方程問題轉(zhuǎn)化為函數(shù)問題解決.此類問題的切入點是借助函數(shù)的零點,結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.14、【解析】
由三角函數(shù)圖象相位變換后表達函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.15、【解析】
根據(jù)交集的定義即可寫出答案?!驹斀狻浚?,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。16、【解析】
根據(jù)題意,畫出空間幾何體,設(shè)的中點分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,,;(2)【解析】
(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關(guān)系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責(zé)人的抽取方法,得出第4組抽取的學(xué)生中至少有一名是負責(zé)人的抽法數(shù),由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學(xué)生,所以利用分層抽樣在50名學(xué)生中抽取5名學(xué)生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設(shè)第3組的3位同學(xué)為、,第4組的2位同學(xué)為、,第5組的1位同學(xué)為,則從五位同學(xué)中抽兩位同學(xué)有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學(xué)、至少有一位同學(xué)是負責(zé)人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎(chǔ)題.18、(1)證明見解析;(2).【解析】
(1)構(gòu)造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點交于點,連接,如下圖所示:因為平面平面,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因為為中點,,故可得//,為中點;又因為四邊形為等腰梯形,是的中點,故可得//;又,且平面,平面,故面面,又因為平面,故面.即證.(2)連接,,作交于點,由(1)可知平面,又因為//,故可得平面,則;又因為//,,故可得即,,兩兩垂直,則分別以,,為,,軸建立空間直角坐標系,則,,,,,,設(shè)面的法向量為,則,,則,可取,設(shè)平面的法向量為,則,,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎(chǔ)題.19、(1);(2).【解析】
(1)建立空間坐標系,通過求向量與向量的夾角,轉(zhuǎn)化為異面直線與直線所成的角的大?。唬?)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設(shè)所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設(shè)是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學(xué)生的數(shù)學(xué)建模以及數(shù)學(xué)運算能力.20、(1)(2)【解析】
(1)當(dāng)時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時,,原不等式可化為,①當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當(dāng)且僅當(dāng),即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 付費推廣活動方案
- 仙海公司團建活動方案
- 代表旁聽庭審活動方案
- 以舊換新活動活動方案
- 企業(yè)體育活動方案
- DB61T-草地分類指南
- 企業(yè)中式活動策劃方案
- 企業(yè)保衛(wèi)部門活動方案
- 企業(yè)公司年會策劃方案
- 企業(yè)創(chuàng)始人培訓(xùn)活動方案
- 《幼兒良好生活習(xí)慣培養(yǎng)的探究》8700字(論文)
- 抗震支架技術(shù)規(guī)格書
- 酒店和健身中心合作方案
- 2024年廣西高考化學(xué)試卷真題(含答案解析)
- 事業(yè)單位考試綜合應(yīng)用能力(醫(yī)療衛(wèi)生類E類)試題及解答參考(2025年)
- 電視臺轉(zhuǎn)播和直播工作注意事項及應(yīng)急預(yù)案
- 食堂食材配送采購 投標方案(技術(shù)方案)
- 臨床試驗行業(yè)消費市場分析
- 浙江省鎮(zhèn)海市鎮(zhèn)海中學(xué)2025屆高三最后一卷歷史試卷含解析
- 2024年陜西省中考化學(xué)試卷真題(含答案)
- 江西省南昌市南昌縣2022-2023學(xué)年八年級下學(xué)期期末英語試題
評論
0/150
提交評論