




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
成都市新都一中2025屆高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.2.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.3.命題“”的否定是()A. B.C. D.4.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.5.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或56.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.7.某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種8.已知雙曲線的左、右焦點(diǎn)分別為、,拋物線與雙曲線有相同的焦點(diǎn).設(shè)為拋物線與雙曲線的一個(gè)交點(diǎn),且,則雙曲線的離心率為()A.或 B.或 C.或 D.或9.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.6310.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.711.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.12.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.2017二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過(guò)程中,則下列表述:①平面;②四點(diǎn)、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.14.在平面直角坐標(biāo)系中,圓.已知過(guò)原點(diǎn)且相互垂直的兩條直線和,其中與圓相交于,兩點(diǎn),與圓相切于點(diǎn).若,則直線的斜率為_(kāi)____________.15.某公園劃船收費(fèi)標(biāo)準(zhǔn)如表:某班16名同學(xué)一起去該公園劃船,若每人劃船的時(shí)間均為1小時(shí),每只租船必須坐滿,租船最低總費(fèi)用為_(kāi)_____元,租船的總費(fèi)用共有_____種可能.16.設(shè)向量,,且,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.(1)求直線和圓的普通方程;(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.18.(12分)已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線的焦點(diǎn)在軸正半軸上,圓心在直線上的圓與軸相切,且關(guān)于點(diǎn)對(duì)稱.(1)求和的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線與交于,與交于,求證:.19.(12分)已知橢圓的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為;(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過(guò)點(diǎn)作斜率為的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.20.(12分)設(shè)函數(shù),(1)當(dāng),,求不等式的解集;(2)已知,,的最小值為1,求證:.21.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.22.(10分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.2、B【解析】
根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過(guò)點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.3、D【解析】
根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫(xiě)即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.4、C【解析】
由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)?,,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.5、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.6、D【解析】
根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯(cuò)誤;命題“:,”的否定為:,,故B錯(cuò)誤;為真,說(shuō)明至少一個(gè)為真命題,則不能推出為真;為真,說(shuō)明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯(cuò)誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點(diǎn)睛】本題主要考查了判斷必要不充分條件,寫(xiě)出命題的逆否命題等,屬于中檔題.7、B【解析】
分三種情況,任務(wù)A排在第一位時(shí),E排在第二位;任務(wù)A排在第二位時(shí),E排在第三位;任務(wù)A排在第三位時(shí),E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項(xiàng)不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時(shí),E排在第二位,剩下四個(gè)位置,先排好D、F,再在D、F之間的3個(gè)空位中插入B、C,此時(shí)共有排列方法:;如果任務(wù)A排在第二位時(shí),E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時(shí),E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問(wèn)題,考查了學(xué)生的邏輯推理能力,屬于中檔題.8、D【解析】
設(shè),,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率.【詳解】過(guò)分別向軸和拋物線的準(zhǔn)線作垂線,垂足分別為、,不妨設(shè),,則,為雙曲線上的點(diǎn),則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點(diǎn)睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡(jiǎn)單性質(zhì),考查運(yùn)算求解能力,屬于中檔題.9、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.10、B【解析】
根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.11、B【解析】
由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時(shí),,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.12、B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問(wèn)題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、①③【解析】
連接、交于點(diǎn),取的中點(diǎn),證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質(zhì)定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結(jié)合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設(shè)平面與平面垂直,利用面面垂直的性質(zhì)定理可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對(duì)于命題①,連接、交于點(diǎn),取的中點(diǎn)、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點(diǎn),為的中點(diǎn),且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對(duì)于命題②,,平面,平面,平面,若四點(diǎn)、、、共面,則這四點(diǎn)可確定平面,則,平面平面,由線面平行的性質(zhì)定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯(cuò)誤;對(duì)于命題③,連接、,設(shè),則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內(nèi)的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對(duì)于命題④,假設(shè)平面與平面垂直,過(guò)點(diǎn)在平面內(nèi)作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯(cuò)誤.故答案為:①③.【點(diǎn)睛】本題考查立體幾何綜合問(wèn)題,涉及線面平行、面面垂直的證明、以及點(diǎn)共面的判斷,考查推理能力,屬于中等題.14、【解析】
設(shè):,:,利用點(diǎn)到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點(diǎn)睛】本題主要考查點(diǎn)到直線的距離公式的運(yùn)用,并結(jié)合圓的方程,垂徑定理的基本知識(shí),屬于中檔題.15、36010【解析】
列出所有租船的情況,分別計(jì)算出租金,由此能求出結(jié)果.【詳解】當(dāng)租兩人船時(shí),租金為:元,當(dāng)租四人船時(shí),租金為:元,當(dāng)租1條四人船6條兩人船時(shí),租金為:元,當(dāng)租2條四人船4條兩人船時(shí),租金為:元,當(dāng)租3條四人船2條兩人船時(shí),租金為:元,當(dāng)租1條六人船5條2人船時(shí),租金為:元,當(dāng)租2條六人船2條2人船時(shí),租金為:元,當(dāng)租1條六人船1條四人船3條2人船時(shí),租金為:元,當(dāng)租1條六人船2條四人船1條2人船時(shí),租金為:元,當(dāng)租2條六人船1條四人船時(shí),租金為:元,綜上,租船最低總費(fèi)用為360元,租船的總費(fèi)用共有10種可能.故答案為:360,10.【點(diǎn)睛】本小題主要考查分類討論的數(shù)學(xué)思想方法,考查實(shí)際應(yīng)用問(wèn)題,屬于基礎(chǔ)題.16、【解析】
根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,其中參數(shù)的絕對(duì)值表示直線上對(duì)應(yīng)點(diǎn)到的距離,因此有,,直接由韋達(dá)定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關(guān)系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標(biāo)方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因?yàn)榉匠蹋?)有兩個(gè)不同的實(shí)根,所以,即,又,所以.因?yàn)?,所以所?點(diǎn)睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標(biāo)方程與直角坐標(biāo)方程互化一般利用公式;(3)過(guò)的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點(diǎn)對(duì)應(yīng)參數(shù),則.18、(1),;(2)證明見(jiàn)解析.【解析】分析:(1)設(shè)的標(biāo)準(zhǔn)方程為,由題意可設(shè).結(jié)合中點(diǎn)坐標(biāo)公式計(jì)算可得的標(biāo)準(zhǔn)方程為.半徑,則的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,則其方程為,由弦長(zhǎng)公式可得.聯(lián)立直線與拋物線的方程有.設(shè),利用韋達(dá)定理結(jié)合弦長(zhǎng)公式可得.則.即.詳解:(1)設(shè)的標(biāo)準(zhǔn)方程為,則.已知在直線上,故可設(shè).因?yàn)殛P(guān)于對(duì)稱,所以解得所以的標(biāo)準(zhǔn)方程為.因?yàn)榕c軸相切,故半徑,所以的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設(shè),則,那么.所以.所以,即.點(diǎn)睛:(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長(zhǎng)問(wèn)題,要注意直線是否過(guò)拋物線的焦點(diǎn),若過(guò)拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過(guò)焦點(diǎn),則必須用一般弦長(zhǎng)公式.19、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)由題意可得,的坐標(biāo),結(jié)合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設(shè)直線,求得的坐標(biāo),再設(shè)直線,求出點(diǎn)的坐標(biāo),寫(xiě)出的方程,聯(lián)立與,可求出的坐標(biāo),由,可得關(guān)于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)直線,則與直線的交點(diǎn),又,設(shè)直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查運(yùn)算求解能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理計(jì)算能力.20、(1)或;(2)證明見(jiàn)解析【解析】
(1)將化簡(jiǎn),分類討論即可;(2)由(1)得,,展開(kāi)后再利用基本不等式即可.【詳解】(1)當(dāng)時(shí),,所以或或解得或,因此不等式的解集的或(2)根據(jù),當(dāng)且僅當(dāng)時(shí),等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法、利用基本不等式證明不等式問(wèn)題,考查學(xué)生基本的計(jì)算能力,是一道基礎(chǔ)題.21、(1)證明見(jiàn)解析;(2).【解析】
(1)連接
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年變電站綜合自動(dòng)化裝置項(xiàng)目建議書(shū)
- 確保建筑施工安全的管理機(jī)制及試題與答案
- 大學(xué)化學(xué)2025年考核策略與技巧試題及答案
- 新能源汽車的設(shè)計(jì)創(chuàng)新試題及答案
- 腹腔鏡單選試題及答案
- 完整心理測(cè)試題及答案
- 統(tǒng)計(jì)ju考試試題及答案
- 小學(xué)教師教育教學(xué)反思與改進(jìn)策略的研究框架
- 建筑施工現(xiàn)場(chǎng)安全管理方法總結(jié)試題及答案
- 物理復(fù)習(xí)中的注意事項(xiàng)試題及答案
- 廣東省廣州市白云區(qū)2024-2025學(xué)年高三下學(xué)期2月統(tǒng)測(cè)英語(yǔ)試卷(含答案)
- 中央2024年中國(guó)合格評(píng)定國(guó)家認(rèn)可中心招聘筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解
- 《植物的成花生理》課件
- 梅毒、乙肝、艾滋病介紹與防治
- 鐵路工程施工組織設(shè)計(jì)
- 【MOOC】中西文化鑒賞-鄭州大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 【MOOC】質(zhì)量管理學(xué)-中國(guó)計(jì)量大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- VIP病房服務(wù)流程
- 高等教育自學(xué)考試自考《計(jì)算機(jī)應(yīng)用基礎(chǔ)》試卷與參考答案(2024年)
- 《顱內(nèi)壓增高的臨床表現(xiàn)》教學(xué)課件
- 2024年山東青島初中學(xué)業(yè)水平考試地理試卷真題(含答案詳解)
評(píng)論
0/150
提交評(píng)論