2025屆黑龍江省哈爾濱九中高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第1頁(yè)
2025屆黑龍江省哈爾濱九中高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第2頁(yè)
2025屆黑龍江省哈爾濱九中高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第3頁(yè)
2025屆黑龍江省哈爾濱九中高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第4頁(yè)
2025屆黑龍江省哈爾濱九中高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆黑龍江省哈爾濱九中高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若的展開(kāi)式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.32.給出個(gè)數(shù),,,,,,其規(guī)律是:第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,以此類(lèi)推,要計(jì)算這個(gè)數(shù)的和.現(xiàn)已給出了該問(wèn)題算法的程序框圖如圖,請(qǐng)?jiān)趫D中判斷框中的①處和執(zhí)行框中的②處填上合適的語(yǔ)句,使之能完成該題算法功能()A.; B.;C.; D.;3.已知函數(shù),若,則的取值范圍是()A. B. C. D.4.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.5.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為()A. B. C. D.6.函數(shù)的大致圖象為A. B.C. D.7.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長(zhǎng)為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.8.已知集合,,若,則()A.或 B.或 C.或 D.或9.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知平面向量,滿(mǎn)足,且,則與的夾角為()A. B. C. D.11.已知復(fù)數(shù)z滿(mǎn)足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i12.一輛郵車(chē)從地往地運(yùn)送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時(shí),裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時(shí)裝上該地發(fā)往后面各地的郵件各1件,記該郵車(chē)到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線y=e-5x+2在點(diǎn)(0,3)處的切線方程為_(kāi)_______.14.平面向量與的夾角為,,,則__________.15.設(shè)函數(shù),則滿(mǎn)足的的取值范圍為_(kāi)_______.16.展開(kāi)式中的系數(shù)為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四邊形是邊長(zhǎng)為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.18.(12分)已知函數(shù).(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求的值.19.(12分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開(kāi)端.某種植戶(hù)對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.20.(12分)已知,.(1)解;(2)若,證明:.21.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖,在正四棱錐中,,,為上的四等分點(diǎn),即.(1)證明:平面平面;(2)求平面與平面所成銳二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先研究的展開(kāi)式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_(kāi)式的通項(xiàng)為,所以的展開(kāi)式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、A【解析】

要計(jì)算這個(gè)數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語(yǔ)句①,根據(jù)累加最的變化規(guī)律可以確定語(yǔ)句②.【詳解】因?yàn)橛?jì)算這個(gè)數(shù)的和,循環(huán)變量的初值為1,所以步長(zhǎng)應(yīng)該為1,故判斷語(yǔ)句①應(yīng)為,第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,這樣可以確定語(yǔ)句②為,故本題選A.【點(diǎn)睛】本題考查了補(bǔ)充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.3、B【解析】

對(duì)分類(lèi)討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.4、A【解析】

根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.5、C【解析】

設(shè)過(guò)點(diǎn)作圓的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過(guò)點(diǎn)作圓的切線的切點(diǎn)為,,所以是中點(diǎn),,,.故選:C.【點(diǎn)睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.6、A【解析】

因?yàn)?,所以函?shù)是偶函數(shù),排除B、D,又,排除C,故選A.7、D【解析】

如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過(guò)作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.8、B【解析】

因?yàn)?所以,所以或.若,則,滿(mǎn)足.若,解得或.若,則,滿(mǎn)足.若,顯然不成立,綜上或,選B.9、C【解析】

由余弦函數(shù)的單調(diào)性找出的等價(jià)條件為,再利用大角對(duì)大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題考查充分必要條件的判定,同時(shí)也考查了余弦函數(shù)的單調(diào)性、大角對(duì)大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.10、C【解析】

根據(jù),兩邊平方,化簡(jiǎn)得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄?,滿(mǎn)足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點(diǎn)睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.11、A【解析】

由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點(diǎn)睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.12、D【解析】

根據(jù)題意,分析該郵車(chē)到第站時(shí),一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計(jì)算可得答案.【詳解】解:根據(jù)題意,該郵車(chē)到第站時(shí),一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點(diǎn)睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

先利用導(dǎo)數(shù)求切線的斜率,再寫(xiě)出切線方程.【詳解】因?yàn)閥′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點(diǎn)睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是14、【解析】

由平面向量模的計(jì)算公式,直接計(jì)算即可.【詳解】因?yàn)槠矫嫦蛄颗c的夾角為,所以,所以;故答案為【點(diǎn)睛】本題主要考查平面向量模的計(jì)算,只需先求出向量的數(shù)量積,進(jìn)而即可求出結(jié)果,屬于基礎(chǔ)題型.15、【解析】

當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),故需滿(mǎn)足,且,解得答案.【詳解】,當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),需滿(mǎn)足,且,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.16、【解析】

變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【詳解】的展開(kāi)式的通項(xiàng)為:,,取和,計(jì)算得到系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】

(1)由已知線面垂直得,結(jié)合菱形對(duì)角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,由已知線面垂直知與平面所成角為,這樣可計(jì)算出的長(zhǎng),寫(xiě)出各點(diǎn)坐標(biāo),求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因?yàn)槠矫妫矫?,所?因?yàn)樗倪呅问橇庑危?又因?yàn)?,平面,平面,所以平?解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,因?yàn)榕c平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個(gè)法向量,則令,則.因?yàn)槠矫妫詾槠矫娴囊粋€(gè)法向量,且所以,.所以二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標(biāo)系,用空間向量法求空間角,這樣可減少思維量,把問(wèn)題轉(zhuǎn)化為計(jì)算.18、(1)見(jiàn)解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),,沒(méi)有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時(shí),等價(jià)于.設(shè)函數(shù),則.當(dāng)時(shí),,所以在單調(diào)遞減.而,故當(dāng)時(shí),,即.(2)設(shè)函數(shù).在只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)在只有一個(gè)零點(diǎn).(i)當(dāng)時(shí),,沒(méi)有零點(diǎn);(ii)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒(méi)有零點(diǎn);②若,即,在只有一個(gè)零點(diǎn);③若,即,由于,所以在有一個(gè)零點(diǎn),由(1)知,當(dāng)時(shí),,所以.故在有一個(gè)零點(diǎn),因此在有兩個(gè)零點(diǎn).綜上,在只有一個(gè)零點(diǎn)時(shí),.點(diǎn)睛:利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.19、(1)當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為;(2)見(jiàn)解析.【解析】

(1)將有3個(gè)坑需要補(bǔ)種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時(shí)有3個(gè)坑要補(bǔ)播種的概率最大.(2)n=1時(shí),X的所有可能的取值為0,1,2,3,1.分別計(jì)算出每個(gè)變量對(duì)應(yīng)的概率,列出分布列,求期望即可.【詳解】(1)對(duì)一個(gè)坑而言,要補(bǔ)播種的概率,有3個(gè)坑要補(bǔ)播種的概率為.欲使最大,只需,解得,因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學(xué)期望.【點(diǎn)睛】本題考查了古典概型的概率求法,離散型隨機(jī)變量的概率分布,二項(xiàng)分布,主要考查簡(jiǎn)單的計(jì)算,屬于中檔題.20、(1);(2)見(jiàn)解析.【解析】

(1)在不等式兩邊平方化簡(jiǎn)轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對(duì)值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對(duì)值三角不等式可得.因此,.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用絕對(duì)值三角不等式證明不等式,考查推理能力與運(yùn)算求解能力,屬于中等題.21、(1)(2)【解析】

(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對(duì)分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時(shí),,由此可知,的解集為(2)當(dāng)時(shí),的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時(shí),,且,不恒成立,不符合題意.當(dāng)時(shí),,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查根據(jù)絕對(duì)值不等式恒成立求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論