中國(guó)礦業(yè)大學(xué)徐海學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
中國(guó)礦業(yè)大學(xué)徐海學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
中國(guó)礦業(yè)大學(xué)徐海學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
中國(guó)礦業(yè)大學(xué)徐海學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
中國(guó)礦業(yè)大學(xué)徐海學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)中國(guó)礦業(yè)大學(xué)徐海學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用》

2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析的風(fēng)險(xiǎn)評(píng)估中,假設(shè)要評(píng)估一個(gè)投資項(xiàng)目的風(fēng)險(xiǎn)水平。以下哪種方法可能更全面地考慮各種不確定性和潛在損失?()A.敏感性分析,研究參數(shù)變化的影響B(tài).蒙特卡羅模擬,隨機(jī)生成多種可能結(jié)果C.風(fēng)險(xiǎn)矩陣,評(píng)估風(fēng)險(xiǎn)的可能性和影響程度D.不進(jìn)行風(fēng)險(xiǎn)評(píng)估,盲目投資2、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而非僅僅是相關(guān)性。假設(shè)你想研究廣告投入與產(chǎn)品銷(xiāo)售之間的關(guān)系,以下關(guān)于因果推斷方法的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.進(jìn)行隨機(jī)對(duì)照實(shí)驗(yàn),控制其他因素來(lái)確定因果關(guān)系B.基于觀察數(shù)據(jù),使用回歸分析來(lái)推斷因果關(guān)系C.僅僅依靠相關(guān)系數(shù)來(lái)判斷因果關(guān)系D.主觀猜測(cè)和經(jīng)驗(yàn)判斷因果關(guān)系3、數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)需要考慮多方面因素。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)設(shè)計(jì)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)包括數(shù)據(jù)源、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和數(shù)據(jù)訪問(wèn)等部分B.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)考慮數(shù)據(jù)的規(guī)模、增長(zhǎng)速度和使用頻率等因素C.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)可以采用分層架構(gòu),將數(shù)據(jù)分為不同的層次進(jìn)行管理D.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)一旦確定就不能再進(jìn)行調(diào)整和優(yōu)化,否則會(huì)影響系統(tǒng)的穩(wěn)定性4、在數(shù)據(jù)分析中,數(shù)據(jù)分析的流程包括多個(gè)步驟,其中數(shù)據(jù)探索是一個(gè)重要的步驟。以下關(guān)于數(shù)據(jù)探索的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)探索可以幫助人們了解數(shù)據(jù)的特征和分布B.數(shù)據(jù)探索可以發(fā)現(xiàn)數(shù)據(jù)中的異常值和噪聲C.數(shù)據(jù)探索可以確定數(shù)據(jù)分析的方法和工具D.數(shù)據(jù)探索只需要對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析,無(wú)需進(jìn)行深入的挖掘和探索5、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測(cè)未來(lái)值是常見(jiàn)的任務(wù)。假設(shè)我們有一組月度銷(xiāo)售數(shù)據(jù),以下關(guān)于時(shí)間序列預(yù)測(cè)方法的描述,正確的是:()A.簡(jiǎn)單線性回歸可以準(zhǔn)確預(yù)測(cè)時(shí)間序列數(shù)據(jù)的未來(lái)值B.ARIMA模型適用于具有明顯季節(jié)性和趨勢(shì)性的時(shí)間序列C.不考慮數(shù)據(jù)的平穩(wěn)性,直接應(yīng)用預(yù)測(cè)模型D.預(yù)測(cè)的時(shí)間跨度越長(zhǎng),預(yù)測(cè)結(jié)果的準(zhǔn)確性就越高6、在數(shù)據(jù)分析的抽樣方法中,假設(shè)要從一個(gè)大規(guī)模的數(shù)據(jù)集中抽取一部分樣本進(jìn)行分析。為了保證樣本具有代表性,以下哪種抽樣方法可能是較好的選擇?()A.簡(jiǎn)單隨機(jī)抽樣,每個(gè)個(gè)體被抽取的概率相等B.分層抽樣,按不同層次分別抽樣C.系統(tǒng)抽樣,按照一定的間隔抽取D.不進(jìn)行抽樣,直接分析整個(gè)數(shù)據(jù)集7、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的配色方案選擇也很重要。假設(shè)要?jiǎng)?chuàng)建一個(gè)展示銷(xiāo)售數(shù)據(jù)的圖表,以下關(guān)于配色方案選擇的描述,正確的是:()A.隨意選擇喜歡的顏色,不考慮顏色的對(duì)比度和可讀性B.使用過(guò)于鮮艷和刺眼的顏色組合,以吸引注意力C.遵循色彩理論和設(shè)計(jì)原則,選擇對(duì)比度高、易于區(qū)分和視覺(jué)舒適的配色方案,使數(shù)據(jù)清晰可讀,并根據(jù)數(shù)據(jù)的性質(zhì)和重要性進(jìn)行顏色映射D.不考慮色盲和色弱人群的觀看體驗(yàn),只追求美觀8、在對(duì)一個(gè)社交媒體平臺(tái)的用戶(hù)興趣數(shù)據(jù)進(jìn)行分析,例如關(guān)注的話(huà)題、參與的討論組等,以進(jìn)行精準(zhǔn)的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶(hù)畫(huà)像和廣告定向中發(fā)揮重要作用?()A.分類(lèi)算法B.聚類(lèi)算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是9、數(shù)據(jù)分析中的數(shù)據(jù)標(biāo)注對(duì)于監(jiān)督學(xué)習(xí)算法至關(guān)重要。假設(shè)要對(duì)圖像數(shù)據(jù)進(jìn)行分類(lèi)標(biāo)注,以下關(guān)于數(shù)據(jù)標(biāo)注方法的描述,正確的是:()A.讓非專(zhuān)業(yè)人員進(jìn)行標(biāo)注,不進(jìn)行質(zhì)量控制B.不制定標(biāo)注規(guī)范和標(biāo)準(zhǔn),導(dǎo)致標(biāo)注結(jié)果不一致C.組織專(zhuān)業(yè)的標(biāo)注團(tuán)隊(duì),制定明確的標(biāo)注規(guī)范和流程,進(jìn)行質(zhì)量檢查和審核,確保標(biāo)注數(shù)據(jù)的準(zhǔn)確性和一致性D.認(rèn)為數(shù)據(jù)標(biāo)注是簡(jiǎn)單的任務(wù),不需要投入太多資源和時(shí)間10、數(shù)據(jù)分析中的文本分類(lèi)任務(wù)需要對(duì)大量文本進(jìn)行自動(dòng)分類(lèi)。假設(shè)要對(duì)新聞文章進(jìn)行分類(lèi),如政治、經(jīng)濟(jì)、體育等類(lèi)別,文本內(nèi)容多樣且語(yǔ)言表達(dá)復(fù)雜。以下哪種方法在處理這種多類(lèi)別文本分類(lèi)問(wèn)題時(shí)更能提高分類(lèi)準(zhǔn)確性?()A.使用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機(jī)器學(xué)習(xí)分類(lèi)算法C.依賴(lài)人工制定的分類(lèi)規(guī)則D.隨機(jī)分類(lèi)11、在數(shù)據(jù)分析中,數(shù)據(jù)可視化不僅可以用于展示結(jié)果,還可以用于探索數(shù)據(jù)。假設(shè)要通過(guò)可視化探索兩個(gè)變量之間的關(guān)系,以下關(guān)于數(shù)據(jù)可視化探索的描述,哪一項(xiàng)是不正確的?()A.散點(diǎn)圖可以直觀地顯示兩個(gè)變量之間的線性或非線性關(guān)系B.熱力圖可以用于展示兩個(gè)變量在不同取值下的頻率或密度C.數(shù)據(jù)可視化探索只是輔助手段,不能替代統(tǒng)計(jì)分析和建模D.可以通過(guò)不斷調(diào)整可視化的參數(shù)和形式,發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和趨勢(shì)12、數(shù)據(jù)分析中的倫理和道德問(wèn)題也需要引起關(guān)注。假設(shè)要使用個(gè)人數(shù)據(jù)進(jìn)行分析,以下關(guān)于倫理和道德原則的描述,正確的是:()A.未經(jīng)用戶(hù)授權(quán),擅自使用個(gè)人數(shù)據(jù)進(jìn)行分析B.不明確告知用戶(hù)數(shù)據(jù)的使用目的和方式,侵犯用戶(hù)知情權(quán)C.遵循合法、公正、透明、最小化使用和安全保障等原則,在獲得用戶(hù)明確授權(quán)的前提下,合理使用個(gè)人數(shù)據(jù),并采取措施保護(hù)用戶(hù)隱私和權(quán)益D.認(rèn)為數(shù)據(jù)分析中的倫理和道德問(wèn)題不重要,只要能得到有價(jià)值的結(jié)果就行13、在進(jìn)行回歸分析時(shí),如果殘差不滿(mǎn)足正態(tài)分布,可能會(huì)對(duì)模型產(chǎn)生什么影響?()A.影響模型的準(zhǔn)確性B.導(dǎo)致系數(shù)估計(jì)有偏差C.模型的預(yù)測(cè)能力下降D.以上都是14、假設(shè)要分析某電商平臺(tái)用戶(hù)的購(gòu)買(mǎi)行為隨時(shí)間的變化趨勢(shì),以下哪種可視化方法較為合適?()A.折線圖B.柱狀圖C.餅圖D.箱線圖15、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究?jī)蓚€(gè)變量之間的線性關(guān)系,通常會(huì)使用哪種統(tǒng)計(jì)方法?()A.方差分析B.回歸分析C.因子分析D.聚類(lèi)分析16、在數(shù)據(jù)分析中,數(shù)據(jù)安全的重要性不言而喻。以下關(guān)于數(shù)據(jù)安全重要性的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)安全可以保護(hù)企業(yè)的商業(yè)機(jī)密和客戶(hù)隱私B.數(shù)據(jù)安全可以防止數(shù)據(jù)的泄露和篡改C.數(shù)據(jù)安全可以提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.數(shù)據(jù)安全只需要關(guān)注數(shù)據(jù)的存儲(chǔ)和傳輸過(guò)程,無(wú)需考慮數(shù)據(jù)分析的過(guò)程17、在構(gòu)建數(shù)據(jù)分析模型時(shí),特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因?yàn)樗y以量化C.直接使用原始數(shù)據(jù),不進(jìn)行任何處理D.將所有特征組合成一個(gè)綜合特征18、在數(shù)據(jù)分析的假設(shè)檢驗(yàn)中,假設(shè)要檢驗(yàn)一種新的營(yíng)銷(xiāo)策略是否顯著提高了產(chǎn)品的銷(xiāo)售額。收集了實(shí)施前后的銷(xiāo)售數(shù)據(jù),以下哪種假設(shè)檢驗(yàn)方法可能是合適的選擇?()A.t檢驗(yàn),比較兩組均值B.方差分析,比較多組均值C.卡方檢驗(yàn),檢驗(yàn)分類(lèi)變量的關(guān)系D.不進(jìn)行假設(shè)檢驗(yàn),主觀判斷營(yíng)銷(xiāo)策略的效果19、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的步驟有很多,其中數(shù)據(jù)清理是一個(gè)重要的步驟。以下關(guān)于數(shù)據(jù)清理的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)清理可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)清理可以填補(bǔ)數(shù)據(jù)中的缺失值C.數(shù)據(jù)清理可以統(tǒng)一數(shù)據(jù)的格式和單位D.數(shù)據(jù)清理可以增加數(shù)據(jù)的數(shù)量和多樣性20、數(shù)據(jù)分析中的貝葉斯方法基于概率推理。假設(shè)我們要根據(jù)新的數(shù)據(jù)更新對(duì)某個(gè)事件的概率估計(jì),以下哪個(gè)貝葉斯定理的應(yīng)用場(chǎng)景是常見(jiàn)的?()A.垃圾郵件過(guò)濾B.疾病診斷C.市場(chǎng)預(yù)測(cè)D.以上都是21、在數(shù)據(jù)分析中,若要比較不同組數(shù)據(jù)的離散程度,以下哪個(gè)指標(biāo)可以使用?()A.方差B.均值C.中位數(shù)D.眾數(shù)22、數(shù)據(jù)分析中的回歸分析用于研究變量之間的關(guān)系。假設(shè)要探究廣告投入與產(chǎn)品銷(xiāo)售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡(jiǎn)單線性回歸一定能準(zhǔn)確反映兩者的關(guān)系,無(wú)需考慮其他因素B.不考慮數(shù)據(jù)的正態(tài)性和方差齊性,直接進(jìn)行回歸分析C.在進(jìn)行回歸分析前,對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和假設(shè)檢驗(yàn),選擇合適的回歸模型,并評(píng)估模型的擬合優(yōu)度和顯著性D.只關(guān)注回歸方程的系數(shù),不考慮模型的殘差和預(yù)測(cè)能力23、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的24、在數(shù)據(jù)分析中,若要分析數(shù)據(jù)的偏態(tài)和峰態(tài),以下哪個(gè)統(tǒng)計(jì)量可以提供相關(guān)信息?()A.偏度系數(shù)B.峰度系數(shù)C.協(xié)方差D.相關(guān)系數(shù)25、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時(shí),需要對(duì)數(shù)據(jù)進(jìn)行探索性分析。以下哪個(gè)工具常用于探索性數(shù)據(jù)分析?()A.ExcelB.SPSSC.PythonD.R二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)闡述數(shù)據(jù)分析中的模型壓縮技術(shù),如剪枝、量化等的原理和應(yīng)用場(chǎng)景,并舉例說(shuō)明在移動(dòng)端模型部署中的應(yīng)用。2、(本題5分)解釋數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)刷新機(jī)制,說(shuō)明如何確保數(shù)據(jù)的及時(shí)性和準(zhǔn)確性,包括全量刷新和增量刷新。3、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何處理數(shù)據(jù)的多層次結(jié)構(gòu)?闡述層次聚類(lèi)、嵌套模型等方法的應(yīng)用。4、(本題5分)在數(shù)據(jù)分析中,如何處理不平衡數(shù)據(jù)集?請(qǐng)闡述常見(jiàn)的處理方法,如過(guò)采樣、欠采樣、生成合成樣本等,并分析它們的優(yōu)缺點(diǎn)。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某手機(jī)應(yīng)用商店擁有應(yīng)用下載數(shù)據(jù)、用戶(hù)評(píng)價(jià)、應(yīng)用分類(lèi)熱度等。分析應(yīng)用市場(chǎng)趨勢(shì),為開(kāi)發(fā)者提供推廣建議。2、(本題5分)某在線瑜伽課程平臺(tái)擁有課程報(bào)名數(shù)據(jù)、用戶(hù)身體狀況、課程評(píng)價(jià)等。設(shè)計(jì)更適合不同用戶(hù)的瑜伽課程。3、(本題5分)某在線音樂(lè)平臺(tái)的搖滾音樂(lè)類(lèi)目擁有用戶(hù)數(shù)據(jù),包括樂(lè)隊(duì)、歌曲熱度、粉絲互動(dòng)、演出信息等。分析樂(lè)隊(duì)知名度與歌曲熱度和粉絲互動(dòng)的關(guān)系,以及演出信息對(duì)用戶(hù)關(guān)注度的影響。4、(本題5分)某在線教育平臺(tái)的語(yǔ)言學(xué)習(xí)類(lèi)目保存了學(xué)生的數(shù)據(jù),包含語(yǔ)言種類(lèi)、學(xué)習(xí)進(jìn)度、作業(yè)完成情況、考試成績(jī)等。分析不同語(yǔ)言種類(lèi)的學(xué)習(xí)進(jìn)度與考試成績(jī)的關(guān)系。5、(本題5分)某汽車(chē)制造商收集了車(chē)輛的質(zhì)量檢測(cè)數(shù)據(jù)、用戶(hù)反饋、售后服務(wù)記錄等。思考如何通過(guò)這些數(shù)據(jù)提升產(chǎn)品質(zhì)量和售后服務(wù)水平。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)在能源管理領(lǐng)域,企業(yè)的能源消耗數(shù)據(jù)、節(jié)能措施效果數(shù)據(jù)等逐漸完善。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像能源效率評(píng)估、節(jié)能潛力挖掘等,實(shí)現(xiàn)企業(yè)的節(jié)能減排目標(biāo),同時(shí)思考在數(shù)據(jù)采集精度受限、行業(yè)標(biāo)準(zhǔn)差異和能源價(jià)格波動(dòng)影響方面的挑戰(zhàn)及應(yīng)對(duì)措施。2、(本題1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論