2024北京重點(diǎn)校初二(下)期中數(shù)學(xué)匯編:平行四邊形(選擇題)_第1頁
2024北京重點(diǎn)校初二(下)期中數(shù)學(xué)匯編:平行四邊形(選擇題)_第2頁
2024北京重點(diǎn)校初二(下)期中數(shù)學(xué)匯編:平行四邊形(選擇題)_第3頁
2024北京重點(diǎn)校初二(下)期中數(shù)學(xué)匯編:平行四邊形(選擇題)_第4頁
2024北京重點(diǎn)校初二(下)期中數(shù)學(xué)匯編:平行四邊形(選擇題)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024北京重點(diǎn)校初二(下)期中數(shù)學(xué)匯編

平行四邊形(選擇題)

一、單選題

1.(2024北京陳經(jīng)綸中學(xué)初二下期中)四邊形A3C。中,對(duì)角線AC與8。交于點(diǎn)。,下列條件中不一

定能判定這個(gè)四邊形是平行四邊形的是()

A.ABDC,AD=BCB.AD//BC,ABDC

C.AB=DC,AD=BCD.OA=OC,OB=OD

2.(2024北京八一學(xué)校初二下期中)如圖,四邊形ABC。的對(duì)角線AC、3。相交于點(diǎn)。,給出下列5個(gè)

條件:@ABCD;②。4=OC;@AB=CD;@ZBAD=ZDCB;@ADBC,從以上5個(gè)條件中任選2

個(gè)條件為一組,能判定四邊形ABCD是平行四邊形的有()組

3.(2024北京海淀初二下期中)如圖,在ABC。中,NB=42。,平分/4DC,則/DEC的度數(shù)為

()

A.14°B.18°C.21°D.22°

4.(2024北京第六十六中學(xué)初二下期中)如圖,在平行四邊形ABCD中,AE平分4AD交邊于E,

AD=6,AB=10,則EC的長為()

5.(2024北京第四中學(xué)初二下期中)在四邊形A3。中,對(duì)角線AC與5。相交于。點(diǎn),給出四組條件:

@AB^DC,AD//BC;②AB=CD,AB//CD;③AB〃CD,AD//BC;④(M=OC,

OB=OD.

能判定此四邊形是平行四邊形的有()組.

A.1B.2C.3D.4

6.(2024北京第一六六中學(xué)初二下期中)如圖,在中,ZC=70°,DE/AB于點(diǎn)E,則4DE

的度數(shù)為()

AD

A.15°B.20°C.25°D.30°

7.(2024北京西城初二下期中)下列命題中,正確的是()

A.一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形

B.對(duì)角線互相垂直的四邊形是平行四邊形

C.兩組對(duì)邊分別相等的四邊形是平行四邊形

D.一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形

8.(2024北京海淀實(shí)驗(yàn)中學(xué)初二下期中)如圖,已知平行四邊形A5CD的面積是1,E、尸分別為AB、

5c的中點(diǎn),G是AQ上的任一點(diǎn),則S刖和分別等于()

A.一和一B.’和一C.工和工D.」和L

63428486

9.(2024北京海淀初二下期中)如圖,在平行四邊形ABC。中,3F平分/ABC,交于點(diǎn)尸,CE平分

NBCD,交AD于點(diǎn)E,AB=3,BC=5,則長為()

A.1B.2C.3D.4

10.(2024北京通州初二下期中)如圖,在中,對(duì)角線AC與80相交于點(diǎn)0,如果AC=12,那

么AO的長是()

A.4B.5C.6D.無法確定

11.(2024北京房山初二下期中)如圖,ABCD中,E是AB延長線上的一點(diǎn),若NEBC=40。,則

—ADC的度數(shù)為()

DC

C.100°D.140°

12.(2024北京101中學(xué)初二下期中)在平行四邊形ABCD中,ZA+ZC=100°,則的度數(shù)為()

A.50°B.80°C.100°D.130°

13.(2024北京大峪中學(xué)初二下期中)如圖,在ABCD中,AELCD,垂足為E.若NZME=28。,則

NC的度數(shù)為()

C.112°D.152°

14.(2024北京匯文中學(xué)初二下期中)如圖,已知AB〃CD,增加下列條件可以使四邊形ABC。成為平行

四邊形的是()

A.Z1=Z2B.AD=BCC.OA=OCD.AD=AB

15.(2024北京日壇中學(xué)初二下期中)在平行四邊形ABC。中,若NB=2NA,則NC的度數(shù)為()

A.15°B.30°C.60°D.120°

16.(2024北京北師大附中初二下期中)在平面直角坐標(biāo)系中,已知A(-LO),8(3,0),C(l,2^),若四

邊形ABCD是平行四邊形,則點(diǎn)。的坐標(biāo)是()

A.(-3,273)B.(-3,73)C.(-1,273)D.(2,2⑹

17.(2024北京第十二中學(xué)初二下期中)如圖,在VABC中,D,E,歹分別是邊BC,AC的中點(diǎn),

若AB=12,BC=14,則四邊形瓦加E的周長為()

A.13B.21C.26D.52

18.(2024北京和平街第一中學(xué)初二下期中)如圖,在四邊形紙片中,ABDC,

AB=DC=A6AD=9,N3cD=30。,點(diǎn)E是線段。。的中點(diǎn),點(diǎn)/在線段上,將△CEF沿所所在

的直線翻折得到,C'EF,連接AC',則AC'長度的最小值是()

A.7后B.-V3C.5A/3D.-V3

22

19.(2024北京和平街第一中學(xué)初二下期中)下列命題是真命題的是()

A.若a>b,貝?。?一2a>1—28

B.等腰三角形的角平分線、中線和高重合

C.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形

D.一個(gè)正多邊形的內(nèi)角和為720。,則這個(gè)正多邊形的一個(gè)外角等于60。

20.(2024北京北師大附中初二下期中)若平行四邊形中兩個(gè)內(nèi)角的度數(shù)比為1:4,則其中較小的內(nèi)角是

)

A.36°B.40°C.45°D.48°

21.(2024北京第十四中學(xué)初二下期中)如圖,在,ABCD中,NA+NC=140。,則25的度數(shù)為()

A.140°B.120°C.110°D.100°

22.(2024北京第八十中學(xué)初二下期中中)如圖,在平行四邊形ABC。中,ZB=2ZA,則/。的度數(shù)為

120°C.110°D.100°

23.(2024北京陳經(jīng)綸中學(xué)初二下期中)下列條件中,不能判定四邊形ABCD是平行四邊形的是()

A.ZA=ZC,AB//CDB.AB//CD,AB=CD

C.AB=CD,AD//BCD.AB//CD,AD//BC

24.(2024北京第十二中學(xué)初二下期中)在平行四邊形ABCD中,有兩個(gè)內(nèi)角的度數(shù)比為1:2,則平行四邊

形ABCD中較小的內(nèi)角是()

A.45°B.120°C.90°D.60°

25.(2024北京北師大附中初二下期中)如圖,在RtZkABC中,ZC=90°,AC=6,BC=8,點(diǎn)、N是BC

邊上一點(diǎn),點(diǎn)M為A3邊上的動(dòng)點(diǎn),點(diǎn)。、E分別為CN,的中點(diǎn),則。E的最小值是()

D

M

D1224

A.2C.3D.

5y

26.(2024北京中關(guān)村中學(xué)初二下期中)如圖,。石是VABC的中位線,ZABC的角平分線交DE于點(diǎn)

F,AB=8,BC=12,則斯的長為()

A.1B.1.5C.2D.2.5

27.(2024北京大興初二下期中)如圖,在口ABCD中,AE平分NBA。,交CD邊于E,AD=3,EC=2,則

A3的長為()

C.2D.1

28.(2024北京第十三中學(xué)初二下期中)如圖,分別在四邊形ABC。的各邊上取中點(diǎn)E,F,G,H,連接

EG,在EG上取一點(diǎn)M,連接胸,過P作交EG于N,將四邊形ABC。中的四邊形①和②

移動(dòng)后按圖中方式擺放,得到四邊形AHM'G'和AFN'E,延長M'G',MF'相交于點(diǎn)K,得到四邊形

MM'KN'.下列說法中,錯(cuò)誤的是()

C.四邊形MMKN'是平行四邊形D.NK=ZAHM'

29.(2024北京匯文中學(xué)初二下期中)如圖,在,ABCD中,AB=4,BC=I,/ABC的平分線交于點(diǎn)

E,則等于()

30.(2024北京第十三中學(xué)初二下期中)如圖,E是平行四邊形ABC。邊BC上一點(diǎn),且=連接

AE,并延長AE與。C的延長線交于點(diǎn)f,如果NF=70。,那么,3的度數(shù)是()

A.30°B.40°C.50°D.70°

31.(2024北京房山初二下期中)下列四組條件中,能判定四邊形ABC。是平行四邊形的有()

?AB=CD,AD=BC?AB=CD,AB//CD

@AB=CD,AD//BC?AB//CD,AD//BC

A.②③④B.①②④C.①②③D.①③④

32.(2024北京第一七一中學(xué)初二下期中)如圖所示,在平行四邊形ABCD中,已知AD=5cm,

AB=3cm,AE平分/BAD交BC邊于點(diǎn)E,則EC等于()

D

A.2cmB.3cmC.4cmD.5cm

33.(2024北京人大附中初二下期中)如圖,ABCD^P,AELCD于點(diǎn)E,若/及LD=35。,則的度

數(shù)為()

AD

A.35°B.55°C.65°D.125°

34.(2024北京中關(guān)村中學(xué)初二下期中)如圖,平行四邊形ABCD中,ZA的平分線AE交CD于E,

AB=6,BC=4,貝|EC的長()

A.1B.1.5C.2D.3

35.(2024北京豐臺(tái)第八中學(xué)初二下期中)如圖,A,B兩點(diǎn)被池塘隔開,在A,B外選一點(diǎn)C,連接AC

和BC,并分別找出AC和BC的中點(diǎn)M,N,如果測得MN=20m,那么A,B兩點(diǎn)間的距離是多少?()

C.40mD.50m

36.(2024北京第十四中學(xué)初二下期中)下列條件中,不能判定一個(gè)四邊形是平行四邊形的是()

A.兩組對(duì)邊分別平行B.兩組對(duì)邊分別相等

C.兩組對(duì)角分別相等D.一組對(duì)邊平行且另一組對(duì)邊相等

37.(2024北京第十二中學(xué)初二下期中)下列選項(xiàng)中,不能判定四邊形ABCD是平行四邊形的是()

A.AD//BC,AB//CDB.AB//CD,AB=CD

C.AD//BC,AB=DCD.AB=DC,AD=BC

38.(2024北京廣渠門中學(xué)初二下期中)如圖,平行四邊形ABC。中,E,尸分別為A。,邊上的一點(diǎn),

增加下列條件,不一定能得出BE〃。尸的是()

BFC

A.AE=CFB.BE=DFC.ZEBF=ZFDED.NBED=NBFD

39.(2024北京H^一實(shí)驗(yàn)中學(xué)初二下期中)ABCD中,ZA:ZB=1:2,則—C的度數(shù)為().

A.30°B.45°C.60°D.120°

參考答案

1.A

【分析】本題主要考查了平行四邊形的判定定理,熟記平行四邊形的判定定理是解題的關(guān)鍵.根據(jù)平行四

邊形的判定定理依次判斷即可.

【詳解】解:A.根據(jù)平行四邊形的判定可知,滿足ABDC,AD=3C的四邊形不一定是平行四邊形,

故A符合題意;

B.根據(jù)兩組對(duì)邊互相平行的四邊形是平行四邊形,可以判定四邊形A2CD為平行四邊形,故B不符合題

忌;

C.根據(jù)兩組對(duì)邊分別相等的四邊形是平行四邊形,可以判定四邊形ABC。為平行四邊形,故C不符合題

忌;

D.根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,可以判定四邊形A3CD為平行四邊形,故D不符合題

屈、9

故選:A.

2.C

【分析】本題考查了平行四邊形的判定和三角形全等的判定和性質(zhì),熟練掌握判定定理是解題的關(guān)鍵.

根據(jù)平行四邊形的判定來進(jìn)行選擇即可.

【詳解】解:能判定四邊形ABC。是平行四邊形的組合有:①②,①③,①④,①⑤,②⑤,④⑤,

選擇①與②:ABCD,

ZBAO=ZDCO,ZABO=ZCDO,

在VAQB與△COD中,

ZABO=ZCDO

,ZBAO=ZDCO

OA=OC

AOB^COD(AAS),

AB=CD,

,四邊形ABCD是平行四邊形;

選擇①與③:ABCD,AB=CD

,四邊形ABC。是平行四邊形;

選擇①與④:ABCD,

ZABOZCDO,

在與中,

ZABO=ZCDO

,/BAD=ZDCB

DB=BD

:.ABD^,CDB(AAS),

AB=CD,

,四邊形是平行四邊形;

選擇①與⑤:ABCD,AD//BC,

,四邊形ABC。是平行四邊形;

選擇②與⑤:ADBC,

:.ZDAO=ABCO,

在△AOD與△CO3中,

ZDAO=NBCO

<ZAOD=ZCOB

OA=OC

..AQZ注一COB(ASA),

AD=BCf

???四邊形A5CD是平行四邊形;

選擇④與⑤:.ADBC,

.,.ZADO=NCBO,

在與△CD5中,

ZADO=ZBCO

<NBAD=NDCB

DB=BD

:.^ABD^CDB(AAS),

AD=BC,

二四邊形ABC。是平行四邊形;

共6組,

故選C.

3.C

【分析】本題考查了平行四邊形的性質(zhì),角平分線的定義和平行線的性質(zhì),由平行四邊形的性質(zhì)得

ZADC=ZB=42°,AD//BC,從而有ZADE=NDEC,再由平分線的定義求出NADE=21。即可,準(zhǔn)確

識(shí)圖并熟練掌握性質(zhì)是解題的關(guān)鍵.

【詳解】解::四邊形ABC。是平行四邊形,

ZADC=ZB=42°,AD//BC,

:.ZADE=ZDEC,

,/DE平分ZAOC,

Z.ZADE=-ZADC=-x42°=21°

22f

:?ZDEC=21。,

故選:C.

4.B

【分析】本題考查了平行四邊形的性質(zhì)、等腰三角形的判定等知識(shí)點(diǎn),熟練掌握平行四邊形的性質(zhì)是解題

關(guān)鍵.先根據(jù)平行四邊形的性質(zhì)可得0)=45=10,48〃。,根據(jù)平行線的性質(zhì)可得44£=//回,再

根據(jù)角平分線的定義可得/球場=/上場,從而可得Z4£D=NZ14E,然后根據(jù)等腰三角形的判定可得

DE=AD=6,最后根據(jù)EC=C?—r)E即可得.

【詳解】解:四邊形ABC。是平行四邊形,AB=10,

:.CD=AB^10,AB//CD,

:.ZBAE=ZAED,

AE平分44D,

:.ZBAE=ZDAE,

:.ZAED=ZDAE,

.".DE=AD=6,

.-.EC=CD-DE=4,

故選B.

5.C

【分析】本題主要考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法,是解題的關(guān)鍵.

①兩組對(duì)邊分別平行的四邊形是平行四邊形;②兩組對(duì)邊分別相等的四邊形是平行四邊形;③一組對(duì)邊平

行且相等的四邊形是平行四邊形;④兩組對(duì)角分別相等的四邊形是平行四邊形,據(jù)此進(jìn)行判斷即可.

【詳解】解:①由AB=OC,AD//BC,可知,四邊形ABC。的一組對(duì)邊平行,另一組對(duì)邊相等,據(jù)此不

能判定該四邊形是平行四邊形,故本選項(xiàng)不符合題意;

②由AB=CD,AB〃CE>可知,四邊形ABC。的一組對(duì)邊平行且相等,據(jù)此能判定該四邊形是平行四邊

形,故本選項(xiàng)符合題意;

③由AB〃CD,可知,四邊形A58的兩組對(duì)邊互相平行,則該四邊形是平行四邊形,故本選

項(xiàng)符合題意;

④由Q4=0C,03=0??芍?,四邊形ASCD的兩條對(duì)角線互相平分,則該四邊形是平行四邊形,故本選

項(xiàng)符合題意;

綜上分析可知,能判定此四邊形是平行四邊形的有3組.

故選:C.

【分析】本題主要考查平行四邊形和直角三角形的性質(zhì),掌握平行四邊形對(duì)角相等是解題的關(guān)鍵.

根據(jù)平行四邊形的性質(zhì),可得NA=NC=70。,再根據(jù)直角三角形的性質(zhì),即可求解.

【詳解】解:;在ABCD中,

.-.ZA=ZC=70°,

-.DE±AB,

ZADE=90°-70°=20°,

故選B.

7.C

【分析】本題主要考查了平行四邊形的判定.根據(jù)平行四邊形的判定定理,逐項(xiàng)判斷即可求解.

【詳解】解:A、一組對(duì)邊平行且相等的四邊形是平行四邊形,故本選項(xiàng)錯(cuò)誤,不符合題意;

B、對(duì)角線互相平分的四邊形是平行四邊形,故本選項(xiàng)錯(cuò)誤,不符合題意;

C、兩組對(duì)邊分別相等的四邊形是平行四邊形,故本選項(xiàng)正確,符合題意;

D、兩組對(duì)邊相等的四邊形是平行四邊形,故本選項(xiàng)錯(cuò)誤,不符合題意;

故選:C

8.C

【分析】本題考查了平行四邊形的性質(zhì),根據(jù)班F、一/GC的底和高與平行四邊形的底和高的關(guān)系即可得

出答案.

【詳解】解:一的底為3C的一半,高也為平行四邊形高的一半;

FGC的底為的一半,高等于平行四邊形的高.

可得SBEF和S.C分別等于平行四邊形ABC。的面積的:和y,

84

即SBEF=g,SGFC=,

故選C.

9.A

【分析】本題主要考查了平行四邊形的性質(zhì)、角平分線的定義,等腰三角形的判定,轉(zhuǎn)化線段是解題的關(guān)

鍵.根據(jù)平行線的性質(zhì)可得N2=/3,N6=N5,由角平分線可得Nl=/2,/4=/5,所以

Nl=/3,/4=/6,所以AF=AB=3,DE=DC=3,貝U根據(jù)EF=AF—AE即可求解.

【詳解】:平行四邊形ABC。,

/.ADBC,CD=AB=3,8C=AZ)=5,

N2=/3,N6=N5,

平分NA5C,CE平分/BCD,

H=12,N4=/5,

/l=/3,N4=/6,

AAF=AB=3,DE=DC=3,

:.AE=AD-DE=5-3=2,

/.EF=AF-AE=3-2=1,

故選A.

【分析】本題考查了平行四邊形的性質(zhì),根據(jù)平行四邊形的對(duì)角線互相平分即可求解.

【詳解】解::在ABCD^,對(duì)角線AC與3。相交于點(diǎn)。,AC=12,

:.AO=-AC=6,

2

故選:C.

11.D

【分析】此題考查了平行四邊形的性質(zhì),根據(jù)平行四邊形的性質(zhì)得到超CD,ADBC,再由平行線的性

質(zhì)即可得到答案.

【詳解】解:中,ABCD,ADBC,

:.ZA=ZEBC=40°,

:.ZADC=180°-ZA=140°,

故選:D

12.D

【分析】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.

根據(jù)平行四邊形的對(duì)角相等、鄰角互補(bǔ)以及圖形可知NA與NC是對(duì)角,即可求出NA和NC的度數(shù);再

根據(jù)與/A是鄰角,即可求得-3.

【詳解】解:如圖:

?..四邊形9CD為平行四邊形,

ZA+ZB=180°,ZA=ZC.

ZA+ZC=100°,

ZA=5O°,

:.ZB=130°.

故選D.

13.B

【分析】根據(jù)AEJLCD,〃4£=28°得至此。=62°,結(jié)合ABCD,得到AD〃BC,繼而得到

ZC+ZD=180°,計(jì)算即可,本題考查了直角三角形的特征,平行四邊形的性質(zhì),熟練掌握特征和性質(zhì)是

解題的關(guān)鍵.

【詳解】VAE1CD,ZDAE=28°,

:.ZD=62°,

■:ABCD,

:?AD〃BC,

:.ZC+ZD=180°,

???ZC=118°,

故選:B.

14.C

【分析】此題考查平行四邊形的判定,全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知平行四邊形的判定定

理.根據(jù)平行四邊形的判定定理即可求解.

【詳解】解:A.VZ1=Z2,

???AB//CD,

???不能判定四邊形ABCD是平行四邊形;

B.AD=5C不能判定四邊形ABCD是平行四邊形;

C.VAB//CD,

JZ1=Z2

OA=OC,ZAOB=ZCOD,

:.AOB^COD(ASA),

JAB=CDf

???四邊形ABCD是平行四邊形;

D.=不能判定四邊形ABC。是平行四邊形;

故選C.

15.C

【分析】利用平行四邊形的性質(zhì)及4=2NA即可求解.

【詳解】解:四邊形ABCD是平行四邊形,

/.ZB+ZA=180°,ZA=ZC,

又ZB=2ZA,

.2=幽=6。。,

3

.-.ZC=60°,

故選c.

【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),熟練掌握平行四邊形鄰角互補(bǔ),對(duì)角相等是解題的關(guān)鍵.

16.A

【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BC,AB=CD,AD//BC,AB//CD,進(jìn)而利用平移的坐標(biāo)

變換解答即可.

【詳解】解::平行四邊形9CD,

AAD=BC,AB=CD,AD//BC,AB//CD,

■:A(-LO),8(3,0),

/.BC向左平移4個(gè)單位可得AD,

.?.點(diǎn)O的坐標(biāo)是(1-4,2石),即。卜3,2白)

故選:A.

【點(diǎn)睛】本題考查平行四邊形的性質(zhì),平移坐標(biāo)規(guī)律,掌握平行四邊形的性質(zhì)和點(diǎn)平移坐標(biāo)變換規(guī)律“左

減右加”是解題的關(guān)鍵.

17.C

【分析】根據(jù)。,E,E分別是邊AB,BC,AC的中點(diǎn),可判定四邊形BDFE是平行四邊形,再根據(jù)三角

形中位線定理,即可求得四邊形的周長.

【詳解】解:E,尸分別是邊AB,BC,AC的中點(diǎn),

DF//BC,EF//AB,

DF=—BC=—x14=7,EF=—AB=—x12=6,

2222

/.CBDFE=2(DP+EF)=2x(7+6)=26,

故選:C

【點(diǎn)睛】本題考查平行四邊形的判定,三角形中位線定理,熟練運(yùn)用中位線定理是解題的關(guān)鍵.

18.C

【分析】由折疊可知EC'=EC,所以當(dāng)A,C,E三點(diǎn)共線時(shí),AC'的長度最小,作AGLCD交的延

長線于點(diǎn)G,根據(jù)勾股定理分別求出DG的長度,即可求AC'長度的最小值.

【詳解】解:連接AE,過點(diǎn)A作AG_LC。交C。的延長線于點(diǎn)G,

G

四邊形是平行四邊形,

:.AD//BC,BC=AD=9,

:.ZADG=ZBCD=30,

22

AG=-AD=^,DG=^AD--AG2=^9-(1)=[6,

E為CD的中點(diǎn),AB=OC=4>Q,

DE=-CD=2A/3,

2

:.EG=DE+DG=2y/3+-y[3=—y/3,

22

AE=y/AG2+EG2=J(|y+=7石;

由折疊可知,EC=EC=2^5,

:.AC>AE-EC,

.?.當(dāng)A,C,E共線時(shí),AC'的長度最小,

此時(shí),AC=AE-EC=143-2>/3=5A/3,

故選:C

【點(diǎn)睛】本題考查折疊問題,勾股定理,平行四邊形的性質(zhì),關(guān)鍵是構(gòu)造直角三角形求AE的長度.

19.D

【分析】根據(jù)不等式的性質(zhì),等腰三角形的性質(zhì),平行四邊形的判定和正多邊形的性質(zhì)依次判斷.

【詳解】解:A、若a>b,則1-2a<l-2b,錯(cuò)誤,故不是真命題;

B、等腰三角形的頂角平分線、底邊上的中線和高重合,錯(cuò)誤,故不是真命題;

C、一組對(duì)邊平行且相等的四邊形是平行四邊形,錯(cuò)誤,故不是真命題;

D、一個(gè)正多邊形的內(nèi)角和為720。,則這個(gè)正多邊形是六邊形,它的一個(gè)外角等于60。,正確,是真命

題;

故選:D.

【點(diǎn)睛】此題考查了真命題:正確的命題是真命題,熟練掌握不等式的性質(zhì),等腰三角形的性質(zhì),平行四

邊形的判定和正多邊形的性質(zhì)是解題的關(guān)鍵.

20.A

【分析】根據(jù)平行四邊形的性質(zhì)可得ZA+NB=180。,結(jié)合題意即可求解.

【詳解】解:如圖所示,四邊形是平行四邊形,

AD

BC

:.ZA+ZB=180°,

ZA=4ZB,

:.ZB+4ZB=180°,

解得:ZB=36°,

故選:A.

【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.

21.C

【分析】根據(jù)平行四邊形對(duì)角相等的性質(zhì)和平行線的性質(zhì)解答即可.

【詳解】解:?.,四邊形ABCD是平行四邊形,

ZA=ZC,AB//CD,

??.ZC+ZB=180°,

???ZA+ZC=140°,

???ZC=ZA=70°,

AZB=110°;

故選:C.

【點(diǎn)睛】本題考查了平行四邊形的對(duì)角相等和平行線的性質(zhì),熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.

22.B

【分析】根據(jù)平行四邊形對(duì)角相等,鄰角互補(bǔ)即可求解.

【詳解】解:-四邊形ABCD是平行四邊形,

.?.ND=NB,ZA+ZB=180°,

ZB=2ZA,

/.ZB=120°,

「.ZD=120。

故選:B

【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的性質(zhì)是解答此題的關(guān)鍵.

23.C

【分析】根據(jù)平行四邊形的判定方法,逐一進(jìn)行判斷即可.

【詳解】解:如圖:

???ZA+ZD=180°,

?'?"+”=180。,

JAD//BC,

???四邊形ABC。是平行四邊形;故A選項(xiàng)不符合題意;

B、VAB//CD,AB=CD,

???四邊形ABCD是平行四邊形;故B選項(xiàng)不符合題意;

C、AB=CD,AD〃5C無法判斷四邊形ABC。是平行四邊形;故C選項(xiàng)符合題意;

D、AB//CD,AD//BC,

???四邊形ABC。是平行四邊形;故D選項(xiàng)不符合題意;

故選C.

【點(diǎn)睛】本題考查平行四邊形的判定,熟練掌握平行四邊形的判定方法,是解題的關(guān)鍵.

24.D

【分析】由平行四邊形的性質(zhì)得出AB〃CD,推出N5+NC=180。,再由N8:NC=1:2,求出N5即可.

【詳解】解::四邊形ABC。是平行四邊形,

AB//CD,

:.ZB+ZC=1800,

?/N3:NC=1:2,

ZB=-xl80°=60°,

3

平行四邊形中較小的內(nèi)角是60°,

故選:B.

【點(diǎn)睛】本題考查平行四邊形的性質(zhì),熟練掌握平行四邊形的鄰角互補(bǔ)是解題的關(guān)鍵.

25.B

【分析】連接CM,利用三角形中位線的性質(zhì)得到。E=1CM,根據(jù)垂線段最短知,當(dāng)四時(shí),CM

最小,即OE最小,利用勾股定理和等面積法求得CM即可.

【詳解】解:連接CM,

?.?點(diǎn)。、E分別為CMMN的中點(diǎn),

DE=-CM,

2

...當(dāng)加時(shí),CM最小,即DE最小,

在Rt^ABC中,ZC=90°,AC=6,BC=8,

???AB=7AC12+BC2=762+82=10,

??.CM的最小值為華答=5,

AB5

1I?

;?DE的最小值為—CM=一,

25

故選:B.

【點(diǎn)睛】本題考查了三角形的中位線性質(zhì)、勾股定理、垂線段最短,熟練掌握三角形的中位線性質(zhì),將求

DE的最小值轉(zhuǎn)化為求CM的最小值是解答的關(guān)鍵.

26.C

【分析】由中位線的性質(zhì)定理得上〃3C,DE;BC=6,且BD=4,由平行線的性質(zhì)結(jié)合角平分線可

2

得DF=BD=4,則可求得£尸的長.

【詳解】止是VABC的中位線,AB=8,BC=12,

:.BD=-AB=4,DE//BC,DE=-BC=6

22f

.\ZDFB=ZCBFf

5廠是—ABC的平分線,

:?/DBF=/CBF,

:.ZDFB=ZDBF,

.?.DF=BD=4,

EF=DE-DF=6-4=2f

故選:C.

【點(diǎn)睛】本題考查了三角形中位線定理,等腰三角形的判定、平行線的性質(zhì)等知識(shí),掌握三角形中位線定

理是解題的關(guān)鍵.

27.A

【分析】首先證明=再根據(jù)平行四邊形的性質(zhì)即可解決問題.

【詳解】解:四邊形ABC。是平行四邊形,

:.BA//CD,AB=CD,

:.ZDEA=ZEAB,

AE平分mw,

:.ZDAE=ZEAB,

:.ZDAE=ZDEA,

..DE=AD=3f

:.CD=CE+DE=2+3=5,

AB=5.

故選:A.

【點(diǎn)睛】本題考查平行四邊形的性質(zhì),等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活應(yīng)用這些知識(shí)

解決問題.

28.D

【分析】SmcGNFsSmAG.KF.,從而A正確;根據(jù)對(duì)稱或全等得出2正確;根據(jù)KM'HMN'^

出C正確;NK=NNMH¥NAHM,得出D錯(cuò)誤.

【詳解】解:如圖,

四邊形CGWFm四邊形AGXF,四邊形A£M廣三四邊形BMVE,四邊形GDHM三四邊形GA/W,

一S四邊形CGW"—S四邊彩AG'KT,

故A正確;

順次連接班6〃,連接叱,得,,EFGH,于是OH=O尸,

可得&VO尸三AMOH,所以NF=GH,

故B正確;

由對(duì)稱性可得:ZM'=ZMHG,

:.MN'//KM',

.NF'//NF//HM,

四邊形MMKM是平行四邊形,

故C正確;

四邊形WKM是平行四邊形,

:.ZK=ZHMN,

AD不一定平行于MN,

:.ZHMN不一定等于ZAHM',

:.AK不一定等于ZAHM',

故D不正確,

故答案為:D.

【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì),中心對(duì)稱及其性質(zhì)的,全等圖形判定等知識(shí),解決問題的

關(guān)鍵是掌握有關(guān)知識(shí).

29.B

【分析】由四邊形A8CD為平行四邊形,得到AO與8c平行,AD=BC,利用兩直線平行得到一對(duì)內(nèi)錯(cuò)角

相等,由3E為角平分線得到一對(duì)角相等,等量代換得到防,利用等角對(duì)等邊得到AB=AE=

4,由A。-AE求出的長即可.

【詳解】解::四邊形ABC。為平行四邊形,

J.AD//BC,AD=BC=I,

/AEB=NEBC,

平分NABC,

ZABE=ZEBC,

:.ZAEB=ZABE,

:.AB=AE=4,

:.ED=AD-AE=BC-AE=1-4=3.

故選:B.

【點(diǎn)睛】此題考查了角平分線的定義,等腰三角形的判定,以及平行四邊形的性質(zhì),熟練掌握平行四邊形

的性質(zhì)是解本題的關(guān)鍵.

30.B

【分析】利用平行四邊形的性質(zhì)以及等腰三角形的性質(zhì)得出/1=/3,再利用三角形的內(nèi)角和定理即可得

到答案.

【詳解】解:如圖所示,

:四邊形ABCD是平行四邊形,

?*.AB//DC,

:.Z1=ZF=JQ0.

.\/l=N3=70。*

:.ZB=40°,

故選:B.

【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì)以及平行線的性質(zhì),等腰三角形的性質(zhì)等知識(shí),熟練應(yīng)用平行

四邊形的性質(zhì)得出是解題關(guān)鍵.

31.B

【分析】根據(jù)平行四邊形的判定定理依次判斷即可得出結(jié)果.

【詳解】解:①根據(jù)兩組對(duì)邊分別相等的四邊形是平行四邊形可判斷四邊形A8CO為平行四邊形;

②根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可判斷四邊形ABCO為平行四邊形;

③不能判定四邊形ABCD為平行四邊形;

④根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形可判斷四邊形ABC。為平行四邊形;

①②④正確,

故選:B.

【點(diǎn)睛】題目主要考查平行四邊形的判定定理,熟練掌握平行四邊形的判定定理是解題關(guān)鍵.

32.A

【分析】根據(jù)在DABCD中,AE平分NBAD,得到NBAE=NAEB,即AB=BE,即可求出EC的長度.

【詳解】???在DABCD中,AE平分NBAD,

AZDAE=ZBAE,NDAE二NAEB,

.\ZBAE=ZAEB,

二?AB=BE,

*.*AD=5cm,AB=3cm,

/.BE=3cm,BC=5cm,

EC=5-3=2cm,

故選:A.

【點(diǎn)睛】本題是對(duì)平行四邊形知識(shí)的考查,熟練掌握平行四邊形性質(zhì)及角平分線知識(shí)是解決本題的關(guān)鍵.

33.B

【分析】由在口48。。中,ZEAD=35°,得出NO的度數(shù),根據(jù)平行四邊形的對(duì)角相等,即可求得N5的

度數(shù),繼而求得答案.

【詳解】解::/£AD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論