版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福州七中2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.3.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.1204.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:5.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.6.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則下述四個(gè)結(jié)論:①②③④點(diǎn)為函數(shù)的一個(gè)對(duì)稱中心其中所有正確結(jié)論的編號(hào)是()A.①②③ B.①③④ C.①②④ D.②③④7.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對(duì)稱;②圖象C關(guān)于點(diǎn)對(duì)稱;③由y=2sin2x的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C.A.① B.①② C.②③ D.①②③8.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.9.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.10.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊(duì)方法數(shù)為().A.432 B.576 C.696 D.96011.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點(diǎn)P,使得|PA|=2|PB|,則正實(shí)數(shù)m的最小值是()A. B.3 C. D.12.若,,,則下列結(jié)論正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值為____14.若雙曲線的離心率為,則雙曲線的漸近線方程為______.15.已知函數(shù)為偶函數(shù),則_____.16.已知拋物線,點(diǎn)為拋物線上一動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)分別為,則線段長(zhǎng)度的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.18.(12分)已知函數(shù).(1)若是的極值點(diǎn),求的極大值;(2)求實(shí)數(shù)的范圍,使得恒成立.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.20.(12分)已知函數(shù)(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù)與的圖象關(guān)于直線對(duì)稱.(為自然對(duì)數(shù)的底數(shù))(1)若的圖象在點(diǎn)處的切線經(jīng)過點(diǎn),求的值;(2)若不等式恒成立,求正整數(shù)的最小值.22.(10分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個(gè)內(nèi)角,若,求的值;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題2、B【解析】
利用復(fù)數(shù)的四則運(yùn)算即可求解.【詳解】由.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,需掌握復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.3、A【解析】
對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。4、C【解析】
根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項(xiàng).【詳解】,,∴等價(jià)于,故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.5、C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.6、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對(duì)稱性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對(duì)稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯(cuò)誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.7、B【解析】
根據(jù)三角函數(shù)的對(duì)稱軸、對(duì)稱中心和圖象變換的知識(shí),判斷出正確的結(jié)論.【詳解】因?yàn)椋郑寓僬_.,所以②正確.將的圖象向右平移個(gè)單位長(zhǎng)度,得,所以③錯(cuò)誤.所以①②正確,③錯(cuò)誤.故選:B【點(diǎn)睛】本小題主要考查三角函數(shù)的對(duì)稱軸、對(duì)稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.8、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.9、A【解析】
先利用最高點(diǎn)縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點(diǎn)法作圖求解.屬于中檔題.10、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊(duì)方法數(shù)為種.故選:B.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,在分類時(shí),要注意不重不漏的原則,本題是一道中檔題.11、D【解析】
設(shè)點(diǎn),由,得關(guān)于的方程.由題意,該方程有解,則,求出正實(shí)數(shù)m的取值范圍,即求正實(shí)數(shù)m的最小值.【詳解】由題意,設(shè)點(diǎn).,即,整理得,則,解得或..故選:.【點(diǎn)睛】本題考查直線與方程,考查平面內(nèi)兩點(diǎn)間距離公式,屬于中檔題.12、D【解析】
根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點(diǎn)睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
根據(jù)的正負(fù)值,代入對(duì)應(yīng)的函數(shù)解析式求解即可.【詳解】解:.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)函數(shù)值的求解,是基礎(chǔ)題.14、【解析】
利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15、【解析】
根據(jù)偶函數(shù)的定義列方程,化簡(jiǎn)求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力,屬于中檔題.16、【解析】
連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時(shí),最小,設(shè)點(diǎn),則,所以當(dāng)時(shí),,則,當(dāng)點(diǎn)的橫坐標(biāo)時(shí),,此時(shí),因?yàn)殡S著的增大而增大,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動(dòng)點(diǎn)到定點(diǎn)的距離的求法,考查學(xué)生的計(jì)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長(zhǎng),得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個(gè)法向量為,.∴二面角的余弦值為.【點(diǎn)睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.18、(1).(2)【解析】
(1)先對(duì)函數(shù)求導(dǎo),結(jié)合極值存在的條件可求t,然后結(jié)合導(dǎo)數(shù)可研究函數(shù)的單調(diào)性,進(jìn)而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導(dǎo)數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當(dāng)x>2,0<x<1時(shí),f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)1<x<2時(shí),f′(x)<0,函數(shù)單調(diào)遞減,故當(dāng)x=1時(shí),函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時(shí)恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當(dāng)t≥0時(shí),g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當(dāng)﹣2<t<0時(shí),g(x)在()上單調(diào)遞減,在(0,),(1,+∞)上單調(diào)遞增,此時(shí)g(1)=t﹣1<﹣1不合題意,舍去;(iii)當(dāng)t=﹣2時(shí),g′(x)0,即g(x)在(0,+∞)上單調(diào)遞增,此時(shí)g(1)=﹣3不合題意;(iv)當(dāng)t<﹣2時(shí),g(x)在(1,)上單調(diào)遞減,在(0,1),()上單調(diào)遞增,此時(shí)g(1)=t﹣1<﹣3不合題意,綜上,t≥1時(shí),f(x)≥2恒成立.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性及極值,利用導(dǎo)數(shù)與函數(shù)的性質(zhì)處理不等式的恒成立問題,分類討論思想,屬于中檔題.19、(Ⅰ)(為參數(shù));(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn),,則,代入化簡(jiǎn)得到答案.(Ⅱ)分別計(jì)算,的極坐標(biāo)方程為,,取代入計(jì)算得到答案.【詳解】(Ⅰ)設(shè)點(diǎn),,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標(biāo)方程為:;,故,極坐標(biāo)方程為:.,故,,故.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.20、(1);(2).【解析】
(1)求導(dǎo)得到,討論和兩種情況,計(jì)算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計(jì)算得到答案.(2)計(jì)算得到,討論,兩種情況,分別計(jì)算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當(dāng)時(shí)恒成立,所以單調(diào)遞增,因?yàn)?,所以有唯一零點(diǎn),即符合題意;②當(dāng)時(shí),令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當(dāng)即,所以符合題意,(ii)當(dāng)即時(shí),因?yàn)?,故存?所以不符題意(iii)當(dāng)時(shí),因?yàn)?,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當(dāng)時(shí),恒成立,所以單調(diào)遞增,所以,即符合題意;②當(dāng)時(shí),恒成立,所以單調(diào)遞增,又因?yàn)?,所以存在,使得,且?dāng)時(shí),。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,恒成立問題,意在考查學(xué)生的分類討論能力和綜合應(yīng)用能力.21、(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點(diǎn)處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對(duì)稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點(diǎn),,又,當(dāng)時(shí),,曲線在點(diǎn)處的切線為,即,代入點(diǎn),得,即,構(gòu)造函數(shù),當(dāng)時(shí),,當(dāng)時(shí),,且,當(dāng)時(shí),單調(diào)遞增,而,故存在唯一的實(shí)數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024車輛運(yùn)輸合同標(biāo)準(zhǔn)范本
- 2024退學(xué)協(xié)議書:針對(duì)研究生院學(xué)員退學(xué)及科研經(jīng)費(fèi)退還合同3篇
- 2024牛棚養(yǎng)殖場(chǎng)市場(chǎng)拓展與銷售渠道建設(shè)承包合同范本3篇
- 2024版智慧城市建設(shè)項(xiàng)目合作合同
- 2024年公務(wù)員考試五華縣《行政職業(yè)能力測(cè)驗(yàn)》預(yù)測(cè)試題含解析
- 2025年度出租車充電樁建設(shè)與運(yùn)營(yíng)管理合同3篇
- 2024面料原產(chǎn)地認(rèn)證購(gòu)銷合同2篇
- 2025年度在線招聘平臺(tái)用戶隱私保護(hù)合同3篇
- 2024版車輛轉(zhuǎn)讓協(xié)議書范文大全
- 2024版學(xué)校食堂綜合承包協(xié)議模板解析版B版
- 2024-2025學(xué)年初中七年級(jí)上學(xué)期數(shù)學(xué)期末綜合卷(人教版)含答案
- 四年級(jí)數(shù)學(xué)(除數(shù)是兩位數(shù))計(jì)算題專項(xiàng)練習(xí)及答案
- 辦理落戶新生兒委托書模板
- 四川省綿陽(yáng)市涪城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期1月期末歷史試卷(含答案)
- 2025年山東水發(fā)集團(tuán)限公司社會(huì)招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫(kù)(共380題含答案)
- 《湖南省房屋建筑和市政工程消防質(zhì)量控制技術(shù)標(biāo)準(zhǔn)》
- 施工現(xiàn)場(chǎng)環(huán)境因素識(shí)別、評(píng)價(jià)及環(huán)境因素清單、控制措施
- 2024年醫(yī)藥行業(yè)年終總結(jié).政策篇 易聯(lián)招采2024
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 接觸鏡臨床驗(yàn)配智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論