安徽大學(xué)《機(jī)器學(xué)習(xí)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
安徽大學(xué)《機(jī)器學(xué)習(xí)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
安徽大學(xué)《機(jī)器學(xué)習(xí)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
安徽大學(xué)《機(jī)器學(xué)習(xí)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
安徽大學(xué)《機(jī)器學(xué)習(xí)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁安徽大學(xué)

《機(jī)器學(xué)習(xí)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、特征工程是機(jī)器學(xué)習(xí)中的重要環(huán)節(jié)。以下關(guān)于特征工程的說法中,錯誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說法錯誤的是()A.特征提取是從原始數(shù)據(jù)中自動學(xué)習(xí)特征表示的過程B.特征選擇是從眾多特征中選擇出對模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進(jìn)行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機(jī)器學(xué)習(xí)算法中需要,深度學(xué)習(xí)算法不需要進(jìn)行特征工程2、在自然語言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是3、在一個分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹C.樸素貝葉斯D.隨機(jī)森林4、假設(shè)正在研究一個醫(yī)療圖像診斷問題,需要對腫瘤進(jìn)行分類。由于醫(yī)療數(shù)據(jù)的獲取較為困難,數(shù)據(jù)集規(guī)模較小。在這種情況下,以下哪種技術(shù)可能有助于提高模型的性能?()A.使用大規(guī)模的預(yù)訓(xùn)練模型,并在小數(shù)據(jù)集上進(jìn)行微調(diào)B.增加模型的層數(shù)和參數(shù)數(shù)量,提高模型的復(fù)雜度C.減少特征數(shù)量,簡化模型結(jié)構(gòu)D.不進(jìn)行任何特殊處理,直接使用傳統(tǒng)機(jī)器學(xué)習(xí)算法5、在機(jī)器學(xué)習(xí)中,降維是一種常見的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是6、在強(qiáng)化學(xué)習(xí)中,智能體通過與環(huán)境進(jìn)行交互來學(xué)習(xí)最優(yōu)策略。假設(shè)一個機(jī)器人需要在復(fù)雜的環(huán)境中找到通往目標(biāo)的最佳路徑,并且在途中會遇到各種障礙和獎勵。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合解決這個問題?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇動作B.SARSA算法,基于當(dāng)前策略進(jìn)行策略評估和改進(jìn)C.策略梯度算法,直接優(yōu)化策略的參數(shù)D.以上算法都不適合,需要使用專門的路徑規(guī)劃算法7、在進(jìn)行數(shù)據(jù)預(yù)處理時,異常值的處理是一個重要環(huán)節(jié)。假設(shè)我們有一個包含員工工資數(shù)據(jù)的數(shù)據(jù)集。以下關(guān)于異常值處理的方法,哪一項是不正確的?()A.可以通過可視化數(shù)據(jù)分布,直觀地發(fā)現(xiàn)異常值B.基于統(tǒng)計學(xué)方法,如三倍標(biāo)準(zhǔn)差原則,可以識別出可能的異常值C.直接刪除所有的異常值,以保證數(shù)據(jù)的純凈性D.對異常值進(jìn)行修正或替換,使其更符合數(shù)據(jù)的整體分布8、某研究團(tuán)隊正在開發(fā)一個用于疾病預(yù)測的機(jī)器學(xué)習(xí)模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗證B.留一法C.自助法D.以上方法都可以9、假設(shè)正在構(gòu)建一個語音識別系統(tǒng),需要對輸入的語音信號進(jìn)行預(yù)處理和特征提取。語音信號具有時變、非平穩(wěn)等特點,在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對語音信號進(jìn)行分幀和加窗C.將語音信號轉(zhuǎn)換為頻域表示D.對語音信號進(jìn)行壓縮編碼,減少數(shù)據(jù)量10、在一個推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類型的物品進(jìn)行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動態(tài)調(diào)整11、某機(jī)器學(xué)習(xí)模型在訓(xùn)練時出現(xiàn)了過擬合現(xiàn)象,除了正則化,以下哪種方法也可以嘗試用于緩解過擬合?()A.增加訓(xùn)練數(shù)據(jù)B.減少特征數(shù)量C.早停法D.以上方法都可以12、在進(jìn)行遷移學(xué)習(xí)時,以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場景和優(yōu)勢,哪一項是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時,可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用13、在一個異常檢測的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測,將遠(yuǎn)離聚類中心的點視為異常,但聚類效果對結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進(jìn)行組合14、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展15、在一個強(qiáng)化學(xué)習(xí)場景中,智能體在探索新的策略和利用已有的經(jīng)驗之間需要進(jìn)行平衡。如果智能體過于傾向于探索,可能會導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗,可能會錯過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行文本分類。2、(本題5分)談?wù)勗诓黄胶鈹?shù)據(jù)集中,如何評估模型的性能。3、(本題5分)說明機(jī)器學(xué)習(xí)在運動醫(yī)學(xué)中的損傷評估。三、論述題(本大題共5個小題,共25分)1、(本題5分)論述在情感分析任務(wù)中,機(jī)器學(xué)習(xí)算法的應(yīng)用和面臨的語言表達(dá)多樣性挑戰(zhàn)。研究如何利用上下文信息和語義理解提高情感分析的準(zhǔn)確性。2、(本題5分)論述機(jī)器學(xué)習(xí)在電信網(wǎng)絡(luò)優(yōu)化中的應(yīng)用。分析數(shù)據(jù)收集和處理方法,以及模型的準(zhǔn)確性和實時性要求。3、(本題5分)論述遷移學(xué)習(xí)的概念和方法,包括基于實例、特征和模型的遷移。探討在什么情況下適合使用遷移學(xué)習(xí),以及如何有效地進(jìn)行遷移。4、(本題5分)論述機(jī)器學(xué)習(xí)在物流配送中的應(yīng)用及優(yōu)化策略。機(jī)器學(xué)習(xí)可以應(yīng)用于物流配送路徑規(guī)劃、需求預(yù)測等方面,提高物流效率。分析其在物流配送中的具體應(yīng)用方法,并討論優(yōu)化策略。5、(本題5分)分析機(jī)器學(xué)習(xí)中的遷移學(xué)習(xí)方法及其在小樣本學(xué)習(xí)中的應(yīng)用。遷移學(xué)習(xí)可以利用已有的知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論