版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁北京郵電大學(xué)
《人工智能與機器倫理》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的模型訓(xùn)練中,過擬合是一個常見的問題。假設(shè)正在訓(xùn)練一個用于手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過擬合的方法,哪一項是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進(jìn)行任何處理,認(rèn)為過擬合不會影響模型性能2、在機器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)是兩種主要的學(xué)習(xí)方式??紤]一個場景,我們有大量未標(biāo)記的圖像數(shù)據(jù),希望從中發(fā)現(xiàn)一些潛在的模式和結(jié)構(gòu)。以下哪種機器學(xué)習(xí)方法更適合這種情況?()A.線性回歸B.決策樹C.聚類分析D.邏輯回歸3、在人工智能的語音情感識別中,以下哪個特征對于準(zhǔn)確判斷情感可能最具挑戰(zhàn)性?()A.語音的語調(diào)B.語音的語速C.說話人的口音D.背景噪音4、在人工智能的圖像語義分割任務(wù)中,需要將圖像中的每個像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開來。假設(shè)圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡單的分割算法,降低計算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對原始圖像進(jìn)行分割5、在人工智能的異常檢測任務(wù)中,例如檢測網(wǎng)絡(luò)中的異常流量或金融交易中的欺詐行為。假設(shè)正常數(shù)據(jù)的模式較為復(fù)雜,而異常數(shù)據(jù)相對較少且具有多樣性。以下哪種方法在這種情況下更適合進(jìn)行異常檢測?()A.基于統(tǒng)計的方法,設(shè)定閾值判斷異常B.無監(jiān)督學(xué)習(xí)方法,自動發(fā)現(xiàn)異常模式C.監(jiān)督學(xué)習(xí)方法,使用有標(biāo)注的異常數(shù)據(jù)進(jìn)行訓(xùn)練D.人工檢查所有數(shù)據(jù),識別異常6、人工智能中的自動規(guī)劃和調(diào)度問題在許多領(lǐng)域都有應(yīng)用,如生產(chǎn)制造、物流配送等。假設(shè)一個工廠要安排生產(chǎn)任務(wù),需要考慮機器的可用性、訂單的優(yōu)先級和交貨日期等約束條件。以下哪種自動規(guī)劃算法在處理這種復(fù)雜的約束滿足問題上最為高效?()A.A*算法B.遺傳算法C.模擬退火算法D.蟻群算法7、在人工智能的自然語言生成任務(wù)中,預(yù)訓(xùn)練語言模型如GPT-3取得了顯著進(jìn)展。假設(shè)要使用預(yù)訓(xùn)練語言模型生成一篇新聞報道,以下哪個步驟是最重要的?()A.選擇合適的預(yù)訓(xùn)練模型B.對模型進(jìn)行微調(diào)C.設(shè)計輸入的提示信息D.評估生成的文本質(zhì)量8、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個大型商場部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項是不準(zhǔn)確的?()A.實時檢測異常行為B.自動識別人員身份C.預(yù)測潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護(hù)問題9、人工智能中的遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型來加速新任務(wù)的學(xué)習(xí)。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型遷移到醫(yī)學(xué)圖像分析任務(wù)中,以下關(guān)于遷移學(xué)習(xí)的步驟,哪一項是不準(zhǔn)確的?()A.凍結(jié)預(yù)訓(xùn)練模型的部分層,只訓(xùn)練特定任務(wù)相關(guān)的層B.直接在新的醫(yī)學(xué)圖像數(shù)據(jù)集上微調(diào)整個預(yù)訓(xùn)練模型C.對新的數(shù)據(jù)集進(jìn)行數(shù)據(jù)增強,以增加數(shù)據(jù)的多樣性D.分析預(yù)訓(xùn)練模型和新任務(wù)之間的差異,選擇合適的遷移策略10、人工智能在醫(yī)療領(lǐng)域的應(yīng)用日益廣泛,假設(shè)一家醫(yī)院正在考慮引入人工智能輔助診斷系統(tǒng)。該系統(tǒng)通過分析大量的醫(yī)療影像和病歷數(shù)據(jù)來提供診斷建議。以下關(guān)于人工智能在醫(yī)療診斷中應(yīng)用的描述,哪一項是不正確的?()A.人工智能可以快速處理和分析海量的醫(yī)療數(shù)據(jù),提高診斷效率B.它能夠發(fā)現(xiàn)人類醫(yī)生可能忽略的細(xì)微模式和特征,提高診斷的準(zhǔn)確性C.人工智能診斷系統(tǒng)完全可以替代人類醫(yī)生,獨立做出最終的診斷決策D.可以為醫(yī)生提供參考和補充信息,幫助醫(yī)生做出更全面和準(zhǔn)確的診斷11、人工智能在智能推薦系統(tǒng)中的應(yīng)用越來越普遍。假設(shè)要為一個電商平臺開發(fā)推薦系統(tǒng),以下關(guān)于考慮用戶興趣動態(tài)變化的方法,哪一項是最重要的?()A.定期重新訓(xùn)練模型,以反映用戶興趣的最新變化B.只根據(jù)用戶的歷史購買記錄進(jìn)行推薦,不考慮近期行為C.為用戶推薦始終不變的熱門商品,不考慮其個人興趣D.隨機推薦商品,期望能夠滿足用戶的動態(tài)興趣12、在人工智能的研究中,可解釋性是一個重要的問題。假設(shè)我們訓(xùn)練了一個復(fù)雜的深度學(xué)習(xí)模型用于醫(yī)療診斷,但是其決策過程難以理解。那么,以下關(guān)于模型可解釋性的說法,哪一項是不正確的?()A.可解釋性對于建立用戶信任至關(guān)重要B.一些可視化技術(shù)可以幫助理解模型的內(nèi)部工作機制C.為了追求高精度,模型的可解釋性可以被犧牲D.可解釋性有助于發(fā)現(xiàn)模型可能存在的偏差和錯誤13、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語言模型的描述,哪一項是不正確的?()A.預(yù)訓(xùn)練語言模型在大規(guī)模通用語料上學(xué)習(xí)了語言的通用知識和模式B.微調(diào)時可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對預(yù)訓(xùn)練語言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化14、在人工智能的發(fā)展中,硬件的支持對于提高計算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢?()A.CPUB.GPUC.TPUD.FPGA15、人工智能在金融欺詐檢測中的應(yīng)用能夠提高防范能力。假設(shè)一個金融機構(gòu)要利用人工智能檢測欺詐行為,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.分析交易數(shù)據(jù)中的異常模式和行為特征,識別潛在的欺詐B.實時監(jiān)測和預(yù)警,及時采取措施阻止欺詐交易C.人工智能可以完全杜絕金融欺詐的發(fā)生,無需其他防范手段D.結(jié)合規(guī)則引擎和機器學(xué)習(xí)算法,提高檢測的準(zhǔn)確性和適應(yīng)性16、人工智能在自動駕駛領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨諸多挑戰(zhàn)。假設(shè)一輛自動駕駛汽車正在道路上行駛,以下關(guān)于自動駕駛中的人工智能技術(shù)的描述,正確的是:()A.自動駕駛汽車完全依賴傳感器數(shù)據(jù)和人工智能算法,不需要人類駕駛員的任何干預(yù)B.人工智能算法能夠在所有復(fù)雜的交通場景中做出完美的決策,不會出現(xiàn)錯誤C.自動駕駛系統(tǒng)需要融合多種傳感器數(shù)據(jù),并通過深度學(xué)習(xí)算法進(jìn)行實時的環(huán)境感知和決策制定D.自動駕駛中的人工智能技術(shù)已經(jīng)非常成熟,不存在任何安全隱患17、在人工智能的智能客服應(yīng)用中,需要快速準(zhǔn)確地回答用戶的問題。假設(shè)用戶的問題類型多樣,包括咨詢、投訴、技術(shù)問題等。為了提高智能客服的回答質(zhì)量和效率,以下哪種技術(shù)或策略是重要的?()A.建立大規(guī)模的問題庫和標(biāo)準(zhǔn)答案B.運用自然語言生成技術(shù)生成回答C.引導(dǎo)用戶提出更簡單的問題D.對復(fù)雜問題直接拒絕回答18、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。以下關(guān)于聯(lián)邦學(xué)習(xí)的說法,不正確的是()A.聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下,實現(xiàn)多個參與方之間的模型訓(xùn)練和共享B.解決了數(shù)據(jù)在不同機構(gòu)之間難以流通和共享的問題C.聯(lián)邦學(xué)習(xí)的通信開銷較大,限制了其在大規(guī)模數(shù)據(jù)上的應(yīng)用D.聯(lián)邦學(xué)習(xí)技術(shù)已經(jīng)非常成熟,不存在任何技術(shù)挑戰(zhàn)和安全風(fēng)險19、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和產(chǎn)品質(zhì)量。假設(shè)一家工廠使用人工智能進(jìn)行質(zhì)量檢測。以下關(guān)于人工智能在制造業(yè)中的應(yīng)用描述,哪一項是不正確的?()A.通過機器視覺技術(shù)檢測產(chǎn)品表面的缺陷和瑕疵B.利用數(shù)據(jù)分析預(yù)測設(shè)備的故障,提前進(jìn)行維護(hù)C.人工智能可以完全自主地優(yōu)化生產(chǎn)流程,無需人工干預(yù)D.與機器人技術(shù)結(jié)合,實現(xiàn)自動化生產(chǎn)和裝配20、人工智能在金融風(fēng)險預(yù)測中具有應(yīng)用潛力。假設(shè)要預(yù)測股票市場的波動,以下哪種數(shù)據(jù)來源可能對預(yù)測結(jié)果的準(zhǔn)確性提升幫助最???()A.公司的財務(wù)報表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟指標(biāo)21、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個特定領(lǐng)域構(gòu)建知識圖譜,以下關(guān)于數(shù)據(jù)來源的選擇,哪一項是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報告,確保知識的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗和知識,以及相關(guān)的數(shù)據(jù)庫和文檔D.隨機選擇一些數(shù)據(jù)來源,不進(jìn)行篩選和評估22、在人工智能的計算機視覺任務(wù)中,目標(biāo)跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響23、在人工智能的倫理和法律問題中,算法偏見是一個需要關(guān)注的重點。假設(shè)一個招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導(dǎo)致對某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見方面最為重要?()A.算法審計B.數(shù)據(jù)清洗和預(yù)處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運用24、人工智能中的機器翻譯是一項具有挑戰(zhàn)性的任務(wù)。假設(shè)我們要將一段中文文本翻譯成英文,以下關(guān)于機器翻譯的挑戰(zhàn),哪一項是不正確的?()A.詞匯的多義性B.語法結(jié)構(gòu)的差異C.文化背景的不同D.機器翻譯的質(zhì)量已經(jīng)超越了人類翻譯25、人工智能在能源管理領(lǐng)域有潛在應(yīng)用。假設(shè)一個智能電網(wǎng)要利用人工智能優(yōu)化電力分配,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.分析用戶用電模式和需求,實現(xiàn)精準(zhǔn)的電力調(diào)度B.預(yù)測電力負(fù)荷變化,提前做好發(fā)電和儲能規(guī)劃C.人工智能可以完全自主地管理電網(wǎng),不需要人工干預(yù)和調(diào)控D.考慮可再生能源的波動性,優(yōu)化能源組合,提高電網(wǎng)穩(wěn)定性二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能系統(tǒng)的安全性考量。2、(本題5分)簡述人工智能在智能質(zhì)量追溯中的技術(shù)。3、(本題5分)解釋人工智能在循環(huán)經(jīng)濟和資源回收中的作用。4、(本題5分)解釋情感計算在人工智能中的研究內(nèi)容。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)分析一個利用人工智能進(jìn)行智能物流包裝優(yōu)化系統(tǒng),探討其如何根據(jù)貨物特性選擇合適包裝材料和方式。2、(本題5分)分析一個利用人工智能進(jìn)行智能民間藝術(shù)傳承保護(hù)系統(tǒng),探討其如何記錄和傳承民間藝術(shù)。3、(本題5分)以某智能手機中的人臉識別解鎖功能為例,研究人工智能技術(shù)在其中的應(yīng)用。4、(本題5分)剖析某智能森林火災(zāi)預(yù)警系統(tǒng)中人工智能的火源監(jiān)測和預(yù)警響應(yīng)機制。5、(本題5分)研究一個使用人工智能的智能舞蹈人才選拔系統(tǒng),分析其如何從眾多候選人中挑選優(yōu)秀舞蹈人才。四、操作題(本大題共3個小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國長橢圓形石英鐘數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國曲軌側(cè)卸工礦車數(shù)據(jù)監(jiān)測研究報告
- 2025年消防器材智能化改造升級服務(wù)合同2篇
- 合同履約通知函
- 2024租賃合同簽訂程序及條件
- 2025年拓展訓(xùn)練合同范本大全:企業(yè)團隊凝聚力提升計劃3篇
- 2023-2028年中國創(chuàng)傷外科用藥行業(yè)市場全景評估及投資前景展望報告
- 二零二四年度2024年三人健身產(chǎn)業(yè)合作合同6篇
- 2025年洗車場車輛停放管理及承包合同3篇
- 2025版航空航天專用鋁合金采購合同書4篇
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務(wù)員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護(hù)理風(fēng)險防控PPT
- 充電樁采購安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 保險行業(yè)加強清廉文化建設(shè)
- Hive數(shù)據(jù)倉庫技術(shù)與應(yīng)用
- 數(shù)字的秘密生活:最有趣的50個數(shù)學(xué)故事
評論
0/150
提交評論