版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
NISTCybersecurityWhitePaperNISTCSWP31
ProxyValidationandVerificationforCriticalAISystems
AProxyDesignProcess
PhillipLaplanteJoannaDeFranco
RickKuhnJeffVoas
ComputerSecurityDivision
InformationTechnologyLaboratory
MohamadKassab
EngineeringDivisionPennStateUniversity
Thispublicationisavailablefreeofchargefrom:
/10.6028/NIST.CSWP.31
September26,2024
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
Certaincommercialentities,equipment,ormaterialsmaybeidentifiedinthisdocumentinordertodescribeanexperimentalprocedureorconceptadequately.SuchidentificationisnotintendedtoimplyrecommendationorendorsementbytheNationalInstituteofStandardsandTechnology(NIST),norisitintendedtoimplythatthe
entities,materials,orequipmentarenecessarilythebestavailableforthepurpose.
NISTTechnicalSeriesPolicies
Copyright,Use,andLicensingStatements
NISTTechnicalSeriesPublicationIdentifierSyntax
PublicationHistory
ApprovedbytheNISTEditorialReviewBoardon2024-09-03
HowtoCitethisNISTTechnicalSeriesPublication:
LaplanteP,DeFrancoJ,KuhnR,VoasJ,KassabM(2023)ProxyValidationandVerificationforCriticalAISystems:AProxyDesignProcess.(NationalInstituteofStandardsandTechnology,Gaithersburg,MD),NISTCybersecurity
WhitePaper(CSWP)NISTCSWP31.
/10.6028/NIST.CSWP.31
AuthorORCIDiDs
PhillipLaplante:0000-0002-0415-271X
JoannaDeFranco:0000-0001-8966-5532
RickKuhn:0000-0003-0050-1596
JeffVoas:0000-0003-1139-3690
MohamadKassab:0000-0002-3647-8511
ContactInformation
cswp-31-comments@
NationalInstituteofStandardsandTechnology
Attn:ComputerSecurityDivision,InformationTechnologyLaboratory
100BureauDrive(MailStop8930)Gaithersburg,MD20899-8930
AdditionalInformation
Additionalinformationaboutthispublicationisavailableat
/publications/cswp,
includingrelatedcontent,potentialupdates,anddocumenthistory.
AllcommentsaresubjecttoreleaseundertheFreedomofInformationAct(FOIA).
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
i
Abstract
Thiswhitepaperdescribesafive-phaseprocessthatincludesidentifyingorbuildingproxy
systemsthathavehighsimilaritytoacriticalAIsystem(CAIS),representingakindofvalidation,andverifyingtheproxybycreatingandtestingbothuseandmisusecasesofeachproxyagainstitsCAIS.
Keywords
artificialintelligence;criticalsystems;criticalAIsystem;validationandverificationtesting.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
ii
TableofContents
ExecutiveSummary 1
1.Introduction 2
11.Bahground2
2.CAISValidationandVerificationProcess—5phases 3
2.2.1.PhysicalOperationalEnvironment 5
2.2.2.ApplicationPurpose 5
2.2.3.OperationalCharacteristics 6
2.2.4.AI/MLDevelopmentAlgorithms 6
2.2.5.AI/MLDevelopmentTechniques 7
2.2.6.CAISandProxyTaxonomyTemplate 7
23.phase3:CAS/proxysimilarityTesting.………….8
2.A.phase4:MiusecasesforFurtherTesting……………9
25.phasespTOXYMissecGaseTesting…………10
References 11
AppendixA.Glossary 12
ListofTables
Table1.ExampleCAIStemplateuse 7
Table2.Examplematchingproxies 8
Table3.Misusecaseandcriticalitylevelfortherobotweedkiller 10
ListofFigures
Fig.1.The5phasesoftheCAISvalidationandverificationprocess 3
Fig.2.CAIStaxonomyproposedin[1] 5
Fig.3.CAIS/Proxysimilaritytesting 9
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
1
ExecutiveSummary
Thiswhitepapersuggeststhatpriortestingartifactsfromsimilarartificialintelligence(AI)systemscanbereusedfornewAIsoftware.TestingAIandmachinelearningsoftwareis
difficult,andapplyingpriortestingresultsfromsimilarsystemsasaproxywouldbeasignificantresearchadvance.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
2
1.Introduction
ThegoalofthisworkistoincreasetrustincriticalAIsystems(CAISs)throughproxyverification
andvalidation.InaCAIS,executingcertaintestcasesisnotalwayspossible,suchaswhenatestcasecouldexposetestersandthepublictosignificantharm,whenanoperationalprofileis
extremelydifficultorimpossibletoarrange,orwhenthecostsofsuchtestingareprohibitivelyhighforanextremelylowlikelihoodscenario.Inthesesituations,itmaybeappropriatetouseanon-criticalequivalentorproxysystemtomodeltheextremecasesinawaythatimbues
confidenceinthescenarios
[1].
Toaddressthisneed,thisworkdescribesafive-phaseprocessthatincludesidentifyingor
buildingproxysystemsthathavehighsimilaritytoaCAIS,representingakindofvalidationandverification(V&V)oftheproxybycreatingandtestingbothuseandmisusecasesofeachproxyagainstitsCAIS.ThisnotionofV&Vresultsfrom“similar”systemstoadifferentsystemisnovel.Thekeytosuccessistheabilitytodemonstrateandmeasure“similarity.”
Insomerespects,thisframeworkissimilartotheproblemoftransferlearning,whereamodeltrainedononedatasetforaparticularenvironmentisusedinadifferentenvironmentorwhenitsuseenvironmentchanges.AnotabledifferencebetweenproxyV&VandtransferlearningisthatboththemodelandtheenvironmentmaydifferintheproxyV&Vcase.Bothframeworks
sharetheneedformeasuresofsimilarity,andsuchmeasureshavebeenthesubjectofresearchintransferlearning
[2].
Statisticalandothermeasuresfromtransferlearningcanbeusedto
quantifysimilaritiesanddifferencesbetweendatasetsthatcontainexamplesofelementsin
theenvironmentwithvaluesassignedtoattributes.Measurescanbeusedtoquantifythe
degreetowhichexamplesinoneclassorcategorydifferfromexamplesinanotherclass,suchasthepresenceorabsenceofvaluesandthemagnitudeofattributevaluedifferencesbetweentwoormoreclasses.SuchmeasurescouldbeadaptedtotheproxyV&Vproblemtocompute
similaritiesbetweendifferentmodelsandtheiruseenvironments.
1.1.Background
NISTSpecialPublication(SP)800-37r2(Revision2),RiskManagementFrameworkfor
InformationSystemsandOrganizations:ASystemLifeCycleApproachforSecurityandPrivacy
[3],
describesaprocessthatintegratestrustworthinesscharacteristics(e.g.,security,privacy);emphasizescontinualtest,evaluation,verification,andvalidation(TEVV);andpromotescybersupplychainriskmanagementacrossthelifecyclesofAIsystems.Systemrequirements
validationandtestingareimportantaspectsofanydevelopmentlifecyclemodel,particularlyforcriticalinfrastructuresystems.Theprocessesdescribedhereinareintendedtosupportand
augmentothervalidationandtestingprocessesthatalignwiththeRiskManagementFramework.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
3
2.CAISValidationandVerificationProcess—5phases
Thefive-phaseprocessin
Fig.1
showsthevalidationprocess
[4]
todeterminerisk(Phase1)andidentifyaproxy(Phase2),verifytheproxybyanalyzingsimilaritiesintheproxysystem(Phase3),createmisusecasesandcategorizerisk(Phase4),andtestthemisusecases(Phase5).
Phases1and2areadaptedfrom
[4].
IDProxySystems
VerifySimilarity
CreateMisusecases
TestMisusecases
AssessCAISRisk
Fig.1.The5phasesoftheCAISvalidationandverificationprocess
2.1.Phase1:AssessCAISRiskLevel
TheU.S.CybersecurityInfrastructureandSecurityAgency(CISA)defines16critical
infrastructuresectorsinwhichdestructionwouldhavea“debilitatingeffectonsecurity,
nationaleconomicsecurity,nationalpublichealthorsafety,oranycombinationthereof”
[5].
Thus,systemsthatfallunderthe16sectorscouldbeconsideredcriticalsystems.
CriticalInfrastructureSectors
1.Chemical:Basicchemicals,specialtychemicals,agriculturalchemicals,andconsumerproducts
2.Commercialfacilities:Entertainment/media,gaming,lodging,outdoorevents,publicassembly,realestate,retail,andsportsleagues
3.Communications:Providersofvoiceservicesusinginterconnectedterrestrial,satellite,andwirelesstransmissionsystems
4.Criticalmanufacturing:Metals;machinery;electricalequipment,appliances,andcomponents;andtransportationequipment
5.Dams:Criticalwaterretentionandcontrolservices
6.Defenseindustrialbase:Research,development,production,delivery,andmaintenanceofmilitaryweaponssystems,subsystems,andcomponentsorpartstomeetU.S.militaryrequirements
7.Emergencyservices:Highlyskilledandtrainedpersonnelandphysicalandcyber
resourcesthatprovideprevention,preparedness,response,andrecoveryservicesduringday-to-dayoperationsandincidentresponse
8.Energy:Electricity,oil,andnaturalgas
9.Financialservices:Depositoryinstitutions,providersofinvestmentproducts,insurancecompanies,othercreditandfinancialorganizations,andprovidersofcriticalfinancialutilitiesandservicesthatsupportthesefunctions
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
4
10.Foodandagriculture:Farms,restaurants,registeredfoodmanufacturing,processing,andstoragefacilities
11.Governmentfacilities:Officebuildings,militaryinstallations,nationallaboratories,courthouses
12.Healthcareandpublichealth:Protectionfromterrorism,infectiousdiseaseoutbreaks,andnaturaldisasters
13.Informationtechnology:Providersofcomputingservices,network,anddatastoragefacilities
14.Nuclearreactors,materials,waste:Activepowerreactors,researchandtestreactors,nuclearfuelcyclefacilities,andotherradioactivesourcesusedformedicaldiagnosticsandtreatment
15.Transportationsystems:Aviation,highwayandmotorcarriers,maritimetransportation,masstransit/passengerrail,pipelinesystems,freightrail,postal,andshipping
16.Waterandwastewater:Wells,reservoirs,watertreatmentfacilities,andwaterdistributioninfrastructure
Eachofthesesectorsmayfurtherclassifysystemsundertheirdomaintocreateriskcategories
thatreflectthelevelofAIintegration.Forexample,levelsofAIintegrationinahealthcaresystemcouldbeconsideredassistive,augmentative,orautonomous.
1
Anautonomous
healthcaresystemwouldbeconsideredaCAIS.
OnceasystemisclassifiedasaCAIS,ametaphoricallyequivalentsystem(orproxy)mustbe
identified.ThegoaloftheproxyistohavethefunctionalequivalenceoftheCAIStoenablesafetesting.Forexample,anautonomousvehiclemayhavearobotvacuumasatestingproxyifit
hassignificantoperationalandimplementationsimilarities.Itisunlikelythattheproxy
coverageoftheCAISwillbecomplete,butthisdoesnotnegatethevalueofproxytesting.ThegoaloftheproxyistocoverthosefeaturesthatcannotbedirectlytestedintheCAIS.Whethersomethingisagoodproxymayalsobehighlydependentonimplementation.
Aproxysystemmayhavedomainequivalence(e.g.,boththeCAISandproxysystemmaybe
spacesystems),butdomainequivalenceisnotaprerequisiteforproxyvalidationandverification.
TheimputationoftheproxytestresultstotheCAISsubstantiallydependsonselectingtheappropriatesetofsystemfeatures.ThefunctionalequivalenceisdeterminedbyafeatureextractionprocessusingthetaxonomydescribedinPhase2.
2.2.Phase2:SystemEvaluationtoFindProxyEquivalents
AnexampletaxonomyforCAISsisproposedin
[1].
ThetaxonomyisusedtomatchtheCAIS’scharacteristicstoatestingproxy(i.e.,non-criticalprototypeordigitaltwin).Thistaxonomy
assessesthefunctionalequivalenceofthetestingproxy.As
Fig.2
illustrates,theproposedCAIS
1Formoreinformation,see
.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
5
taxonomyincludesthefollowingfivedimensions:physicaloperationalenvironment,AI
applicationpurpose,operationalcharacteristics,artificialintelligence/machinelearning(AI/ML)technologies,andAI/MLtechniques.
AI/ML
Development
Algorithms
AI/ML
DevelopmentTechniques
AIApplicationPurpose
OperationalCharacteristics
Physical
OperationalEnvironment
Fig.2.CAIStaxonomyproposedin
[1]
2.2.1.PhysicalOperationalEnvironment
Physicalenvironmentsrefertobothnaturalenvironments(e.g.,lakes,oceans,forests)and
human-createdenvironments(e.g.,offices,factories,schools),whichcanaffectthequalityoflifeforbothpeopleandsystems.Operationalenvironments(OEs)generallyincludeair,space,andsubsurfaceterrains(e.g.,maritime,oceanography,hydrology).CyberspaceshouldalsobeconsideredanOEgivenhowdatacantravelthroughthephysicalworld.
2.2.2.ApplicationPurpose
Determininganapplication’spurposehelpstoidentifyproxycharacteristics.Ingeneral,anAIapplicationisdesignedandbuiltbasedoncertaincharacteristics,sometimesreferredtoas
“designforX”orDfX,whereXstandsforexcellenceorforaqualityrequirement(e.g.,
testability,reliability,etc.).DesigningthiswayensuresthatthemostimportantcharacteristicsofaCAISarereflectedinthefinaldesignoftheproxy.
Systemcharacteristicscanbeanalyzedbyreviewingitsdomainandgoals,suchasdetermining
whetherasystemdomainisintheareaofcommunication,learning,planning,reasoning,orprovidingaservice.OverallAIgoalscanthenbeidentified,suchaslanguageprocessing,
computervision,deeplearning,datascience,ormachinelearning.Thisanalysisinformsthenextphaseofdeterminingoperationalcharacteristics.Forexample,ifagoalofaCAISistooperateautonomously,theproxymustalsobethesametypeofautonomoussystem.
Definitionsforthecharacteristicsshouldbeconsistent.Forexample,inNISTSpecialPublication(SP)1011-I-2-0,theDoDdefinedanautonomousvehicletohavelevelswith“nohuman
operatoraboardtheprincipalcomponents,whichactsinthephysicalworldtoaccomplish
assignedtasks.Itmaybemobileorstationary.Itcanincludeanyandallassociatedsupporting
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
6
componentssuchasoperatedcontrolunits(OCU)s”
[6].
Theyalsoofferedexamples,suchasunmannedgroundvehicles(UGV),unmannedaerialvehicles/systems(UAV/UAS),unmannedmaritimevehicles(UMV)(e.g.,unmannedunderwatervehicles[UUV]orunmannedwater
servicebornevehicles[USV]),unattendedmunitions(UM),andunattendedgroundsensors(UGS).Missiles,rockets,submunitions,andartilleryarenotconsideredtheprincipal
componentsofunmannedsystems
[6].
Asanotherexample,SAEJ3016,“Taxonomyand
DefinitionsforTermsRelatedtoDrivingAutomationSystemsforOn-RoadMotorVehicles”
[7],
describesfivedifferentlevelsofautonomyforautonomousvehicles.
Afterdefiningthetypeofautonomousvehicle,itshouldbedeterminedwhetherthesystemisfullyorsemi-autonomous.Semi-autonomousisdefinedasanunmannedsystemthatiscapableofautonomousoperationbetweenhumaninteractions
[8].
2.2.3.OperationalCharacteristics
Operationalcharacteristicsrepresentpotentialbehaviorsandeffectsonthesystem,andmatchingthemisvitalforproxyaccuracy.Therearemanypossiblewaystoorganizeandstandardizethesecharacteristics,suchas:
1.O1.Moving/stationary[no=0/yes=1]
2.O2.Mission:Navigation,targetacquisition,targetattack,gatheringsomething,deliveringsomething/payload(e.g.,gas,water,packages)[canbe>1ofthese;b1b2b3b4b5,wherebi=1ifthedomainapplies]
3.O3.Financialconsequences[onascaleof0-9,where0representsnofinancialconsequencesand9representscatastrophicfinancialconsequences]
4.O4.Socialconsequences[onascaleof0-9,where0representsnosocialconsequencesand9representscatastrophicsocialconsequences(e.g.,privacy,elections,
compliance/law)]
5.O5.Humanrisk[onascaleof0-9,where0representsnohumanriskand9representscatastrophichumanrisk(e.g.,totheoperator,user,passenger)]
2.2.4.AI/MLDevelopmentAlgorithms
TheNISTAIGlossary
[9]
definesAIas:
…aninterdisciplinaryfield,usuallyregardedasabranchofcomputerscience,dealingwithmodelsandsystemsfortheperformanceoffunctionsgenerallyassociatedwithhumanintelligence,suchas reasoningandlearning.
ThatsameglossarydefinesMLas“ageneralapproachfordeterminingmodelsfromdata”
[9].
CAISalgorithms—whetherAI,ML,ordeeplearning—dependontheapplication,andproxyAI/MLalgorithmsshouldmatchthealgorithmsofaCAISandthelearningtype(i.e.,supervised
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
7
versusunsupervised).ExamplealgorithmsincludeNa?veBayesestimation,linearregression,principalcomponentanalysis,anddecisiontrees.
AnimportantconsiderationwhenselectingaproxyistheavailabilityandequivalencyofthetrainingdatasetsforMLalgorithms.ConfidenceintheresultsofanyMLalgorithmtestingoftheproxysystemdependsontheequivalencyofthatdatasettotheCAIS.Insomecases,thisequivalencymaybeimpossibletoachieve.
2.2.5.AI/MLDevelopmentTechniques
ThetechniquesusedtodevelopmatchingproxiesforaCAISshouldalsobeconsideredsince
testingcouldcapturesideeffectsandunintendedbehaviorsinducedbythesetechniques.
Developmentconsiderationsincludetheprogramminglanguagesused(e.g.,C++,Python,etc.),developmentenvironments,andsoftwaredevelopmentprocesses.
.FlexibilityoftheProposedTaxonomy
Sections
2.2.1
through
2.2.5
representagenericstructureforaproposedCAIStaxonomy.Itisastartingpointtoidentifyanduseproxysystemsfortesting,andlong-termuseandnegotiationwillrefineandimprovethetaxonomy.Differentdomains(e.g.,aerospace,medical,power
generationanddistribution)mayfurtherrefineandevolvespecifictaxonomiesanddimensionsofevaluation.Furthermore,thegranularityoftheLikertscalesisarbitrary.Forexample,ascaleof0-99oranothercouldbeusedforanyofthefactors.
2.2.6.CAISandProxyTaxonomyTemplate
Thetemplateshownin
Table1
canbeusedtodeterminethedistinguishingfeaturesofaCAISanditsproxies.
Table1
demonstratestheCAIStaxonomywithanautonomousvehiclethatisgiventheconsequencesoftherisksofoperationalfailure.Thegoalistotestthenavigation
system’sobstacleavoidancealgorithm.
Table1.ExampleCAIStemplateuse
Phy.Op.Envmt.
AIApp.Purpose
Operational
Charac.
Dev.
Algorithm
Dev.Tech.
AutonomousVehicle
Land
Reasoning,learning,
planning,services
O1:1;02:11111;
O3:0;
O4:9;05:9
KMP
Algorithm
Java
Table2
showstwoproxysystemsanalyzedusingtheCAIStaxonomy:arobotweedkillerandarobotvacuum.ThevalidationofsimilarityoftheCAISandproxymatchwilloccurinPhase3.
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
8
Table2.Examplematchingproxies
Phy.Op.Envmt.
AIApp.Purpose
Operational
Charac.
Dev.
Algorithm
Dev.Tech.
RobotWeedKiller
Land
Reasoning,learning,
planning,services
O1:1;02:11111;
O3:0;
O4:0;05:9
KMP
Algorithm
Java
RobotVacuum
Land
Reasoning,learning,
planning,services
O1:1;02:11111;
O3:0;
O4:0;05:9
KMP
Algorithm
Java
2.3.Phase3:CAIS/ProxySimilarityTesting
TestingoccursinbothPhase3andPhase5oftheCAISProxyValidationprocess,wherePhase3
focusesonsimilaritytestingandPhase5focusesonmisusecasetesting.Thisprocessis
describedindetailin
[1].
IfthesimilaritytestingissuccessfulinPhase3,misusecasesarecreatedinPhase4toultimatelybetestedinPhase5.
Forexample,multipleproxiesfortheautonomousvehiclewerecreatedinPhase2.Eachproxyhasincreasinglevelsofcriticalityandfunctionalityforanautonomousvehicle—robotvacuum(level1)robotweedkiller(level2)robotlawnmower(level3)autonomousvehicle
(level4)—inthat,
?Theyallusesimilarnavigationsystemalgorithms.
?Theyallusesimilarobstacleavoidancealgorithms.
?Eachproxycanhavemultiplefailureusecasesatvariouslevelsofcriticality.
Therefore,inPhase3,appropriateusecasescenariosofeachproxyaretestedagainsteach
otherandagainsttheCAIStovalidatethematchingprocess
(Fig.3)
.Inotherwords,usingtheseproxyexamplesfromPhase2,therobotvacuumwouldbetestedagainsttherobotweedkillerandthenagainsttheautonomousvehicletovalidatethedimensionsclaimedinPhase2.
CAIS
Proxy2
Proxy1
NISTCSWP31ProxyValidationandVerification
September26,2024forCriticalAISystems
9
Fig.3.CAIS/Proxysimilaritytesting
2.4.Phase4:MisuseCasesforFurtherTesting
Writemisusecasesforeachproxyusingcriticalityanalysis.TheprocessisbasedonInteragencyReport(IR)8179,CriticalityAnalysisProcessModel:PrioritizingSystemsandComponents
[8].
AlthoughCAPisintendedforinformationassetriskanalysisandmanagement,themodel
providesanapproachtoanalyzingandunderstandingessentialsystems,subsystems,
components,subcomponents,andtheiroperatingenvironments.Specifically,thisapproachwillbeusedbyfollowingtwosteps:
1.Determinethemisusecasesofaproxy:UsetheCAPprocesstodeterminewhatcangowrongduringaproxy’soperation.Inthisstep,analyzeworkflows,dependencies,
boundaries,interactions,intersections,connections,constraints,andtriggersofthesystemanditscomponents.
2.Categorizethemisusecaseswithincreasinglevelsofrisk:
CAIS1proxy1misusecase1-N,whereeachusecasehasanincreasinglevelofrisk
CAIS1proxy2misusecase1-N,whereeachusecasehasanincreasinglevelofriskExample(resultsshownin
Table3)
:
Robotweedkiller—aproxyforanautonomousvehicle:
1.Determinethemisusecases:
a.Definetheworkflowpaths,dependences,andboundaries.Identifythe
interactions,intersections,connections,dependencies,constraints,andtriggersofthesystemanditscomponents(e.g.,GPS,ML,othersensorsthatcouldfail,
weather,etc.).Example:
Dependencies:Sensors,GPS,MLdatasetConstraints:Weather
Trigger:Identifyandavoidobstacles,andsprayweeds.
b.Determinedysfunctionalstates(misusecases),suchasbrokensensors,maliciousentities,downtime,slowoperatingspeeds,ormisidentifiedobstacles.
Questionstoask(resultsshownin
Table3)
:
i.Whatwillhappentothefunctions/capabilitiesdeliveredbythe
subsystemwhencomponentsorsubcomponentsfailandresultinanadverseoperatingstate?
ii.Whatwilltheimpactonsubsystemoperationsbe?
iii.Whichofthecomponentsaremostimportantforthesubsystemtocontinueoperating?
NISTCSWP31ProxyValidationandVerification
September2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)廚房承接協(xié)議樣本(2024年度版)版B版
- 2024年軟件分銷商授權(quán)協(xié)議3篇
- 2024年貸款協(xié)議模板:不動(dòng)產(chǎn)抵押借款條款版B版
- 2025年度智能機(jī)器人控制系統(tǒng)研發(fā)與采購合同3篇
- 2024年版租賃權(quán)轉(zhuǎn)讓合同
- 現(xiàn)金服務(wù)知識(shí)培訓(xùn)課件
- 2024年量子計(jì)算機(jī)研發(fā)與轉(zhuǎn)讓協(xié)議
- 《消防逃生安全知識(shí)》課件
- 長安大學(xué)《土壤污染治理》2023-2024學(xué)年第一學(xué)期期末試卷
- 美容行業(yè)的護(hù)理顧問工作總結(jié)
- 《閥門安裝一般規(guī)定》課件
- 邊緣計(jì)算應(yīng)用
- 江蘇省建筑節(jié)能分部工程施工方案范本
- 危險(xiǎn)化學(xué)品事故應(yīng)急預(yù)案
- 高考寫作指導(dǎo):《登泰山記》《我與地壇》材料
- 同意未成年出國聲明 - 中英
- 人工造林項(xiàng)目投標(biāo)方案
- 數(shù)字經(jīng)濟(jì)學(xué)導(dǎo)論-全套課件
- 2023版(五級(jí))脊柱按摩師技能認(rèn)定考試題庫大全-上(單選題部分)
- 教育系統(tǒng)自然災(zāi)害類突發(fā)公共事件應(yīng)急預(yù)案
- 魯教版化學(xué)八年級(jí)上冊全冊教學(xué)課件(五四制)
評(píng)論
0/150
提交評(píng)論