版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省平頂山,許昌市,汝州市2025屆高三第六次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.2.各項(xiàng)都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或3.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個(gè)數(shù)為()A.1 B.2 C.3 D.44.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.5.第七屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日至27日在中國(guó)武漢舉行,中國(guó)隊(duì)以133金64銀42銅位居金牌榜和獎(jiǎng)牌榜的首位.運(yùn)動(dòng)會(huì)期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個(gè)運(yùn)動(dòng)場(chǎng)地提供服務(wù),要求每個(gè)人都要被派出去提供服務(wù),且每個(gè)場(chǎng)地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是()A. B. C. D.6.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號(hào)是()A.①②③ B.①② C.①③ D.②③7.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.若,,,則下列結(jié)論正確的是()A. B. C. D.9.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為()A. B.4 C.2 D.10.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.11.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.12.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列的前n項(xiàng)和為,且,若,則______________.14.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則15.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點(diǎn),若點(diǎn)的坐標(biāo)為,則的取值范圍為_(kāi)_________.16.已知等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則=__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.19.(12分)如圖,在正四棱柱中,,,過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn)(不在棱的端點(diǎn)處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點(diǎn),當(dāng)四邊形為菱形時(shí),求長(zhǎng).20.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個(gè)極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.21.(12分)已知函數(shù)是自然對(duì)數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.22.(10分)如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點(diǎn),滿足,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)圖象關(guān)于軸對(duì)稱(chēng)可知關(guān)于對(duì)稱(chēng),從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對(duì)稱(chēng)圖象關(guān)于對(duì)稱(chēng)時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對(duì)稱(chēng)性和單調(diào)性比較函數(shù)值的大小關(guān)系問(wèn)題,關(guān)鍵是能夠通過(guò)奇偶性和對(duì)稱(chēng)性得到函數(shù)的單調(diào)性,通過(guò)自變量的大小關(guān)系求得結(jié)果.2、C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項(xiàng)之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因?yàn)閿?shù)列各項(xiàng)都是正數(shù),所以,而,故選C.點(diǎn)睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.3、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項(xiàng).【詳解】已知對(duì)于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時(shí),,當(dāng)即時(shí),取等號(hào),當(dāng)時(shí),函數(shù)沒(méi)有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個(gè)數(shù)為1個(gè).故選:A.【點(diǎn)睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運(yùn)用基本不等式時(shí),滿足所需的條件,屬于基礎(chǔ)題.4、A【解析】
觀察可知,這個(gè)幾何體由兩部分構(gòu)成,:一個(gè)半圓柱體,底面圓的半徑為1,高為2;一個(gè)半球體,半徑為1,按公式計(jì)算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c(diǎn)睛】本題通過(guò)三視圖考察空間識(shí)圖的能力,屬于基礎(chǔ)題。5、A【解析】
根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場(chǎng)地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故選:A.【點(diǎn)睛】本題考查組合的應(yīng)用和概率的計(jì)算,屬于基礎(chǔ)題.6、B【解析】
由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個(gè)結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個(gè)結(jié)論;設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,進(jìn)而判斷第三個(gè)結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對(duì)稱(chēng)性可知,,兩點(diǎn)關(guān)于軸對(duì)稱(chēng),所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以③不正確.故選:B.【點(diǎn)睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.7、B【解析】
構(gòu)造長(zhǎng)方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個(gè)面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長(zhǎng)方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個(gè):①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n??jī)煞矫孢M(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長(zhǎng)方體為載體進(jìn)行分析.8、D【解析】
根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點(diǎn)睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】
由復(fù)數(shù)的綜合運(yùn)算求出,再寫(xiě)出其共軛復(fù)數(shù),然后由模的定義計(jì)算模.【詳解】,.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題.10、D【解析】
設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長(zhǎng)公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問(wèn)題.解決圓錐曲線中的面積類(lèi)最值問(wèn)題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來(lái)求解最值.11、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.12、C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項(xiàng)為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點(diǎn)睛】本題考查已知與的關(guān)系求數(shù)列通項(xiàng)的問(wèn)題,要注意n的范圍,考查學(xué)生運(yùn)算求解能力,是一道中檔題.14、3【解析】
先根據(jù)約束條件畫(huà)出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫(huà)出可行域如圖所示.目標(biāo)函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時(shí)即為所求.2y+1=0x-y-1=0點(diǎn)A(12,z在點(diǎn)A處有最小值:z=2×1故答案為:32【點(diǎn)睛】本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合,結(jié)合目標(biāo)函數(shù)的幾何意義是解決此類(lèi)問(wèn)題的基本方法.15、【解析】
由正弦定理可得點(diǎn)在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點(diǎn)在曲線上,設(shè),則,,又,,因?yàn)椋瑒t,即的取值范圍為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查學(xué)生計(jì)算能力,有一定的綜合性,但難度不大.16、【解析】
根據(jù)等差中項(xiàng)性質(zhì),結(jié)合等比數(shù)列通項(xiàng)公式即可求得公比;代入表達(dá)式,結(jié)合對(duì)數(shù)式的化簡(jiǎn)即可求解.【詳解】等比數(shù)列的各項(xiàng)都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項(xiàng)公式可知,所以,解得或(舍),所以由對(duì)數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的簡(jiǎn)單應(yīng)用,等比數(shù)列通項(xiàng)公式的用法,對(duì)數(shù)式的化簡(jiǎn)運(yùn)算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)將有兩個(gè)零點(diǎn)轉(zhuǎn)化為方程有兩個(gè)相異實(shí)根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問(wèn)題轉(zhuǎn)化為對(duì)一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個(gè)零點(diǎn)關(guān)于的方程有兩個(gè)相異實(shí)根由,知有兩個(gè)零點(diǎn)有兩個(gè)相異實(shí)根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為;(2)當(dāng)時(shí),,原命題等價(jià)于對(duì)一切恒成立對(duì)一切恒成立.令令,,則在上單增又,,使即①當(dāng)時(shí),,當(dāng)時(shí),,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問(wèn)題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.18、(Ⅰ)(為參數(shù));(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn),,則,代入化簡(jiǎn)得到答案.(Ⅱ)分別計(jì)算,的極坐標(biāo)方程為,,取代入計(jì)算得到答案.【詳解】(Ⅰ)設(shè)點(diǎn),,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標(biāo)方程為:;,故,極坐標(biāo)方程為:.,故,,故.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【解析】
(1)由平面與平面沒(méi)有交點(diǎn),可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點(diǎn),從而得出是的中點(diǎn),可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個(gè)平面沒(méi)有交點(diǎn),則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因?yàn)?,兩點(diǎn)不在棱的端點(diǎn)處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),若四邊形為菱形,則,易證,所以,即為的中點(diǎn),因此,且,所以是的中位線,則是的中點(diǎn),所以.【點(diǎn)睛】本題考查了立體幾何中的線線平行和垂直的判定問(wèn)題,和線段長(zhǎng)的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.20、(1);(2)【解析】
(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對(duì)恒成立求解(2)由(1)知,是的兩個(gè)根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域?yàn)椋?因?yàn)閱握{(diào),所以對(duì)恒成立,所以,恒成立,因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以;(2)由(1)知,是的兩個(gè)根.從而,,不妨設(shè),則.因?yàn)?,所以t為關(guān)于a的減函數(shù),所以..令,則.因?yàn)楫?dāng)時(shí),在上為減函數(shù).所以當(dāng)時(shí),.從而,所以在上為減函數(shù).所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.21、(1)減區(qū)間是,增區(qū)間是;(2),證明見(jiàn)解析.【解析】
(1)當(dāng)時(shí),求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個(gè)極值點(diǎn),求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版建筑垃圾清運(yùn)及資源化利用合同3篇
- 二零二五年度招投標(biāo)保證擔(dān)保合同協(xié)議書(shū)范本3篇
- 2025年度水電設(shè)施節(jié)能減排承包服務(wù)合同4篇
- 二零二五版MCN達(dá)人內(nèi)容創(chuàng)作合作合同3篇
- 二零二五年度房產(chǎn)交易資金監(jiān)管協(xié)議4篇
- 2025年度模具行業(yè)市場(chǎng)調(diào)研與分析合同4篇
- 二零二五版交通事故致人受傷后續(xù)治療費(fèi)用補(bǔ)償合同3篇
- 二零二五版煤礦安全生產(chǎn)標(biāo)準(zhǔn)化轉(zhuǎn)讓合同規(guī)范3篇
- 二零二五年度城市公交車(chē)車(chē)體廣告租賃服務(wù)協(xié)議4篇
- 2025年智慧農(nóng)業(yè)設(shè)施建設(shè)項(xiàng)目合同3篇
- 勞務(wù)協(xié)議范本模板
- 2024年全國(guó)職業(yè)院校技能大賽高職組(生產(chǎn)事故應(yīng)急救援賽項(xiàng))考試題庫(kù)(含答案)
- 2025大巴車(chē)租車(chē)合同范文
- 老年上消化道出血急診診療專(zhuān)家共識(shí)2024
- 人教版(2024)數(shù)學(xué)七年級(jí)上冊(cè)期末測(cè)試卷(含答案)
- 2024年國(guó)家保密培訓(xùn)
- 2024年公務(wù)員職務(wù)任命書(shū)3篇
- CFM56-3發(fā)動(dòng)機(jī)構(gòu)造課件
- 會(huì)議讀書(shū)交流分享匯報(bào)課件-《殺死一只知更鳥(niǎo)》
- 重癥血液凈化血管通路的建立與應(yīng)用中國(guó)專(zhuān)家共識(shí)(2023版)
- 果殼中的宇宙
評(píng)論
0/150
提交評(píng)論