版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
甘肅省慶陽市孟壩中學2025屆高考數(shù)學一模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.2.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.已知集合,集合,若,則()A. B. C. D.4.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.65.已知,則()A. B. C. D.6.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.7.已知函數(shù),若,則a的取值范圍為()A. B. C. D.8.()A. B. C.1 D.9.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.10.向量,,且,則()A. B. C. D.11.數(shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.412.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.14.如圖,在長方體中,,E,F(xiàn),G分別為的中點,點P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.15.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.16.若函數(shù),則__________;__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.18.(12分)如圖,在四棱錐中,底面,,,,為的中點,是上的點.(1)若平面,證明:平面.(2)求二面角的余弦值.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.20.(12分)已知非零實數(shù)滿足.(1)求證:;(2)是否存在實數(shù),使得恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由21.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.22.(10分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學生的計算能力和轉(zhuǎn)化能力.2、C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎題.3、A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.4、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.5、C【解析】
利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.6、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學生轉(zhuǎn)化與化歸的思想,是一道中檔題.7、C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時可先確定函數(shù)定義域,在定義域內(nèi)求解.8、A【解析】
利用復數(shù)的乘方和除法法則將復數(shù)化為一般形式,結(jié)合復數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點睛】本題考查復數(shù)模長的計算,同時也考查了復數(shù)的乘方和除法法則的應用,考查計算能力,屬于基礎題.9、D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.10、D【解析】
根據(jù)向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導公式的應用,屬于中檔題.11、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.12、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側(cè)面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.14、【解析】
如圖,連接,證明平面平面EFG.因為直線平面EFG,所以點P在直線AC上.當時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因為E,F(xiàn),G分別為AB,BC,的中點,所以,平面,則平面.因為,所以同理得平面,又.所以平面平面EFG.因為直線平面EFG,所以點P在直線AC上.在中,,故當時.線段的長度最小,最小值為.故答案為:【點睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學生對這些知識的理解掌握水平.15、【解析】
過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點睛】本題主要考查平面向量的線性運算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.16、01【解析】
根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點睛】本題考查了分段函數(shù)求值的簡單應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)存在,【解析】
(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉(zhuǎn)化為極坐標方程.根據(jù)極坐標和直角坐標轉(zhuǎn)化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點,,則,且點到直線的距離,∴,∴.【點睛】本小題主要考查坐標變換,考查直線和圓的位置關(guān)系,考查極坐標方程和直角坐標方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.18、(1)證明見解析(2)【解析】
(1)因為,利用線面平行的判定定理可證出平面,利用點線面的位置關(guān)系,得出和,由于底面,利用線面垂直的性質(zhì),得出,且,最后結(jié)合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標系,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因為,平面,平面,所以平面,因為平面,平面,所以可設平面平面,又因為平面,所以.因為平面,平面,所以,從而得.因為底面,所以.因為,所以.因為,所以平面.綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點,,,所在直線分別為,,軸,建立如圖所示的空間直角坐標系.因為,所以,則,,,,所以,,,.設是平面的法向量,由取取,得.設是平面的法向量,由得取,得,所以,即的余弦值為.【點睛】本題考查線面垂直的判定和空間二面角的計算,還運用線面平行的性質(zhì)、線面垂直的判定定理、點線面的位置關(guān)系、空間向量的坐標運算等,同時考查學生的空間想象能力和邏輯推理能力.19、(1);(2)最小值為,此時【解析】
(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標和直角坐標相互轉(zhuǎn)化公式,求得曲線的直角坐標方程.(2)設出的坐標,結(jié)合點到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時點的坐標.【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標方程是(2)設,的最小值就是點到直線的最小距離.設在時,,是最小值,此時,所以,所求最小值為,此時【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程轉(zhuǎn)化為直角坐標方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.20、(1)見解析(2)存在,【解析】
(1)利用作差法即可證出.(2)將不等式通分化簡可得,討論或,分離參數(shù),利用基本不等式即可求解.【詳解】又即即①當時,即恒成立(當且僅當時取等號),故②當時恒成立(當且僅當時取等號),故綜上,【點睛】本題考查了作差法證明不等式、基本不等式求最值、考查了分類討論的思想,屬于基礎題.21、(1)證明見解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據(jù)0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當且僅當x=y(tǒng)=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當且僅當x=y(tǒng)=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運算能力,屬中檔題.22、(1)分布列見解析;(2)406.【解析】
(1)計算個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為,得到分布列.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年創(chuàng)新技術(shù)研發(fā)服務合同
- 2025年度大型工程建設項目擔保合同范本(含安全環(huán)保)
- 2025年度杭州市區(qū)二手房買賣合同范本升級版
- 2025年度房地產(chǎn)項目合同付款補充協(xié)議書
- 2025年度國際金融借貸合同法分則借貸合同范本
- 2025年農(nóng)業(yè)灌溉項目噴灌設施供應合同
- 2025年度互聯(lián)網(wǎng)股權(quán)收購居間服務合同
- 二零二五電商品牌授權(quán)經(jīng)銷商合同范本4篇
- 2025年度化糞池、隔油池清掏與污水檢測與排放監(jiān)管合同
- 2025年黃沙購銷及倉儲服務合同范本
- 2025年山西國際能源集團限公司所屬企業(yè)招聘43人高頻重點提升(共500題)附帶答案詳解
- 青海省海北藏族自治州(2024年-2025年小學六年級語文)統(tǒng)編版隨堂測試(上學期)試卷及答案
- 江蘇省無錫市2023-2024學年高三上學期期終教學質(zhì)量調(diào)研測試語文試題(解析版)
- 《民航安全檢查(安檢技能實操)》課件-第一章 民航安全檢查員職業(yè)道德
- DB34T4826-2024畜禽養(yǎng)殖業(yè)污染防治技術(shù)規(guī)范
- 腰麻課件教學課件
- 石油化工企業(yè)環(huán)境保護管理制度預案
- 2024年甘肅省高考歷史試卷(含答案解析)
- 2024年山東省煙臺市初中學業(yè)水平考試地理試卷含答案
- 《小英雄雨來》讀書分享會
- 中央導管相關(guān)血流感染防控
評論
0/150
提交評論