新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題04 函數(shù)及其性質(zhì)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題04 函數(shù)及其性質(zhì)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題04 函數(shù)及其性質(zhì)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題04 函數(shù)及其性質(zhì)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題04 函數(shù)及其性質(zhì)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

答案第=page11頁(yè),共=sectionpages22頁(yè)解密04講:函數(shù)及其性質(zhì)【練基礎(chǔ)】一、單選題1.(2018·全國(guó)·高三課時(shí)練習(xí)(文))已知集合SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由已知得SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選A.2.(2022·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的值域是SKIPIF1<0

SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由SKIPIF1<0,知SKIPIF1<0,解得SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.,即為SKIPIF1<0和SKIPIF1<0兩函數(shù)圖象有交點(diǎn),作出函數(shù)圖象,如圖所示:由圖可知,當(dāng)直線和半圓相切時(shí)SKIPIF1<0最小,當(dāng)直線過(guò)點(diǎn)A(4,0)時(shí),SKIPIF1<0最大.當(dāng)直線和半圓相切時(shí),SKIPIF1<0,解得SKIPIF1<0,由圖可知SKIPIF1<0.當(dāng)直線過(guò)點(diǎn)A(4,0)時(shí),SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0.故選A.3.(2020·全國(guó)·高三課時(shí)練習(xí)(理))已知SKIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí)SKIPIF1<0(m為常數(shù)),則SKIPIF1<0的值為(

)A.4 B.6 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先由函數(shù)在R上是奇函數(shù)求出參數(shù)m的值,求函數(shù)函數(shù)的解板式,再由奇函數(shù)的性質(zhì)得到f(﹣log35)=﹣f(log35)代入解析式即可求得所求的函數(shù)值.【詳解】由題意,f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=3x+m(m為常數(shù)),∴f(0)=30+m=0,解得m=﹣1,故有x≥0時(shí)f(x)=3x﹣1∴f(﹣log35)=﹣f(log35)=﹣(SKIPIF1<0)=﹣4故選C.【點(diǎn)睛】本題考查函數(shù)奇偶性質(zhì),解題的關(guān)鍵是利用f(0)=0求出參數(shù)m的值,再利用性質(zhì)轉(zhuǎn)化求值,本題考查了轉(zhuǎn)化的思想,方程的思想.4.(2021·全國(guó)·高三專題練習(xí)(理))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】分別求得SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0時(shí),對(duì)應(yīng)函數(shù)SKIPIF1<0的值域,根據(jù)二次函數(shù)圖像及性質(zhì)可知SKIPIF1<0時(shí),令SKIPIF1<0,可解得SKIPIF1<0的最大值.【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,值域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,值域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,值域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),對(duì)任意SKIPIF1<0都有SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:C【點(diǎn)睛】本題主要考查了函數(shù)與方程的應(yīng)用問(wèn)題,二次函數(shù)的圖象與性質(zhì),也考查了運(yùn)算與求解能力,以及分類討論的解題思想,屬于中檔題.5.(2019·天津·高考真題(文))已知函數(shù),若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有兩個(gè)互異的實(shí)數(shù)解,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】畫(huà)出SKIPIF1<0圖象及直線SKIPIF1<0,借助圖象分析.【詳解】如圖,當(dāng)直線SKIPIF1<0位于SKIPIF1<0點(diǎn)及其上方且位于SKIPIF1<0點(diǎn)及其下方,或者直線SKIPIF1<0與曲線SKIPIF1<0相切在第一象限時(shí)符合要求.即SKIPIF1<0,即SKIPIF1<0,或者SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選D.【點(diǎn)睛】根據(jù)方程實(shí)根個(gè)數(shù)確定參數(shù)范圍,常把其轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù),特別是其中一條為直線時(shí)常用此法.6.(2022·四川省仁壽縣文宮中學(xué)高三開(kāi)學(xué)考試(理))若函數(shù)SKIPIF1<0在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由分段函數(shù)單調(diào)遞增的特性結(jié)合單調(diào)增函數(shù)的圖象特征列出不等式組求解即得.【詳解】因函數(shù)SKIPIF1<0在R上單調(diào)遞增,則有SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0在SKIPIF1<0上也遞增,根據(jù)增函數(shù)圖象特征知,點(diǎn)SKIPIF1<0不能在點(diǎn)SKIPIF1<0上方,于是得SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)a的取值范圍是SKIPIF1<0.故選:A7.(2019·全國(guó)·高考真題(理))函數(shù)SKIPIF1<0在SKIPIF1<0的圖像大致為()A. B.C. D.【答案】B【分析】由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由SKIPIF1<0的近似值即可得出結(jié)果.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱,排除選項(xiàng)C.又SKIPIF1<0排除選項(xiàng)D;SKIPIF1<0,排除選項(xiàng)A,故選B.【點(diǎn)睛】本題通過(guò)判斷函數(shù)的奇偶性,縮小考察范圍,通過(guò)計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.8.(2022·河南·南陽(yáng)中學(xué)模擬預(yù)測(cè)(文))已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則下列結(jié)論一定正確的是(

)A.SKIPIF1<0 B.函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱C.函數(shù)SKIPIF1<0是奇函數(shù) D.SKIPIF1<0【答案】B【分析】推導(dǎo)出SKIPIF1<0可判斷A選項(xiàng)的正誤;推導(dǎo)出SKIPIF1<0可判斷B選項(xiàng)的正誤;分析得出SKIPIF1<0可判斷C選項(xiàng)的正誤;推導(dǎo)出SKIPIF1<0可判斷D選項(xiàng)的正誤.【詳解】對(duì)于A選項(xiàng),因?yàn)镾KIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,A錯(cuò);對(duì)于B選項(xiàng),因?yàn)镾KIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,B對(duì);對(duì)于C選項(xiàng),因?yàn)镾KIPIF1<0,故函數(shù)SKIPIF1<0是偶函數(shù),C錯(cuò);對(duì)于D選項(xiàng),因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,D錯(cuò).故選:B.二、多選題9.(2022·全國(guó)·高三專題練習(xí))已知偶函數(shù)SKIPIF1<0滿足:SKIPIF1<0,且當(dāng)0≤x≤2時(shí),SKIPIF1<0,則下列說(shuō)法正確的是(

)A.-2≤x≤0時(shí),SKIPIF1<0B.點(diǎn)(1,0)是f(x)圖象的一個(gè)對(duì)稱中心C.f(x)在區(qū)間[-10,10]上有10個(gè)零點(diǎn)D.對(duì)任意SKIPIF1<0,都有SKIPIF1<0【答案】AC【分析】由偶函數(shù)的定義得解析式,判斷A,由SKIPIF1<0上的解析式判斷B,已知條件得SKIPIF1<0是一條對(duì)稱軸,這樣函數(shù)SKIPIF1<0是周期函數(shù),周期為4,利用周期性可判斷零點(diǎn)個(gè)數(shù),判斷C,由最值判斷D.【詳解】因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0時(shí),SKIPIF1<0,A正確;在SKIPIF1<0上,SKIPIF1<0不關(guān)于SKIPIF1<0對(duì)稱,因此SKIPIF1<0不是SKIPIF1<0的一個(gè)對(duì)稱中心,B錯(cuò);由SKIPIF1<0得SKIPIF1<0,因此在SKIPIF1<0上,SKIPIF1<0有兩個(gè)零點(diǎn),又SKIPIF1<0,所以SKIPIF1<0是函數(shù)圖象的一條對(duì)稱軸,SKIPIF1<0,所以SKIPIF1<0是周期函數(shù),周期為4,因此SKIPIF1<0在SKIPIF1<0上各有2個(gè)零點(diǎn),在SKIPIF1<0上共有10個(gè)零點(diǎn),C正確;由周期性知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D錯(cuò).故選:AC.【點(diǎn)睛】思路點(diǎn)睛:本題考查函數(shù)的奇偶性、對(duì)稱性與周期性,解題關(guān)鍵是由兩個(gè)對(duì)稱性得出函數(shù)具有周期性,因此只要在一個(gè)周期內(nèi)確定函數(shù)的零點(diǎn),從而可得函數(shù)的性質(zhì)可得整個(gè)定義域上函數(shù)的性質(zhì).10.(2021·福建·寧化濱江實(shí)驗(yàn)中學(xué)高三期中)下列函數(shù)中是偶函數(shù),且在區(qū)間SKIPIF1<0上單調(diào)遞增的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】利用函數(shù)的奇偶性的定義判斷奇偶性,根據(jù)函數(shù)解析式判斷單調(diào)性.【詳解】A,因?yàn)镾KIPIF1<0,SKIPIF1<0是偶函數(shù),在區(qū)間SKIPIF1<0上為增函數(shù),符合題意;B,因?yàn)镾KIPIF1<0,SKIPIF1<0是奇函數(shù),且在區(qū)間SKIPIF1<0上為減函數(shù),不符合題意;C,因?yàn)镾KIPIF1<0,SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,不符合題意;D,因?yàn)镾KIPIF1<0,SKIPIF1<0是偶函數(shù),且在區(qū)間SKIPIF1<0上為增函數(shù),符合題意.故選:AD11.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0是定義在R上的偶函數(shù),且對(duì)任意SKIPIF1<0,有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則(

)A.SKIPIF1<0是以2為周期的周期函數(shù)B.點(diǎn)SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)對(duì)稱中心C.SKIPIF1<0D.函數(shù)SKIPIF1<0有3個(gè)零點(diǎn)【答案】BD【分析】首先根據(jù)函數(shù)的對(duì)稱性求出SKIPIF1<0的周期和對(duì)稱中心,然后求得SKIPIF1<0.利用圖象法即可判斷D.【詳解】依題意,SKIPIF1<0為偶函數(shù),且SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是周期為4的周期函數(shù),故A錯(cuò)誤;因?yàn)镾KIPIF1<0的周期為4,SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,所以SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)對(duì)稱中心,故B正確;因?yàn)镾KIPIF1<0的周期為4,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;作函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示,由圖可知,兩個(gè)函數(shù)圖象有3個(gè)交點(diǎn),所以函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),故D正確.故選:BD.12.(2020·全國(guó)·模擬預(yù)測(cè))設(shè)函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則下列說(shuō)法正確的是(

)A.4是函數(shù)SKIPIF1<0的周期B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱D.函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱【答案】ACD【解析】選項(xiàng)A.由SKIPIF1<0奇函數(shù)結(jié)合條件可得SKIPIF1<0,可判斷;

選項(xiàng)B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0可判斷;選項(xiàng)C.由條件可得SKIPIF1<0,可判斷;

選項(xiàng)D.由條件可得SKIPIF1<0,即SKIPIF1<0,從而可判斷.【詳解】由函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù)及SKIPIF1<0可得SKIPIF1<0,所以4是函數(shù)SKIPIF1<0的周期,故A正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤;由SKIPIF1<0及SKIPIF1<0為奇函數(shù)可得SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,故C正確;易知SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,故D正確.故選:ACD三、填空題13.(2007·重慶·高考真題(理))若函數(shù)f(x)=SKIPIF1<0的定義域?yàn)镽,則SKIPIF1<0的取值范圍為_(kāi)______.【答案】SKIPIF1<0【詳解】SKIPIF1<0恒成立,SKIPIF1<0恒成立,SKIPIF1<014.(2021·廣東·高州一中高三階段練習(xí))已知y=f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,且對(duì)任意的x∈R,f(x+2)=f(-x)恒成立,當(dāng)SKIPIF1<0時(shí),f(x)=2x,則f(2021)=_____________.【答案】SKIPIF1<0【分析】由已知條件推出函數(shù)SKIPIF1<0的周期,利用函數(shù)的周期和奇偶性求值即可.【詳解】y=f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則SKIPIF1<0又SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0的周期為SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<015.(2021·全國(guó)·高三專題練習(xí))已知f(x)是定義域?yàn)镽的偶函數(shù),且在區(qū)間(-∞,0]上單調(diào)遞增,則不等式,f(3x-1)>f(2)的解集是________.【答案】SKIPIF1<0【解析】根據(jù)函數(shù)的奇偶性,可知函數(shù)在SKIPIF1<0上遞減,即可求解.【詳解】因?yàn)閒(x)是定義域?yàn)镽的偶函數(shù),且在區(qū)間(-∞,0]上單調(diào)遞增,所以函數(shù)在SKIPIF1<0上遞減,因?yàn)閒(3x-1)>f(2),所以SKIPIF1<0所以SKIPIF1<0即-2<3x-1<2,解得SKIPIF1<0.故答案為:SKIPIF1<016.(2022·全國(guó)·高三專題練習(xí)(文))若“SKIPIF1<0,使得SKIPIF1<0成立”是假命題,則實(shí)數(shù)SKIPIF1<0的取值范圍為_(kāi)__________.【答案】SKIPIF1<0【分析】轉(zhuǎn)化為“SKIPIF1<0,使得SKIPIF1<0成立”是真命題,利用不等式的基本性質(zhì)分離參數(shù),利用函數(shù)的單調(diào)性求相應(yīng)最值即可得到結(jié)論.【詳解】若“SKIPIF1<0,使得SKIPIF1<0成立”是假命題,則“SKIPIF1<0,使得SKIPIF1<0成立”是真命題,分離SKIPIF1<0,進(jìn)而SKIPIF1<0.【點(diǎn)睛】本題考查存在性命題的真假判定,涉及不等式的恒成立問(wèn)題,函數(shù)的單調(diào)性和最值問(wèn)題,轉(zhuǎn)化為“SKIPIF1<0,使得SKIPIF1<0成立”是真命題是關(guān)鍵步驟,分離參數(shù)法是本題的關(guān)鍵思想方法.四、解答題17.(2019·全國(guó)·高三專題練習(xí)(文))設(shè)SKIPIF1<0,且SKIPIF1<0.(1)求實(shí)數(shù)SKIPIF1<0的值及函數(shù)SKIPIF1<0的定義域;(2)求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值.【答案】(1)SKIPIF1<0;SKIPIF1<0;(2)1.【分析】(1)代入可求出參數(shù)SKIPIF1<0的值,根據(jù)對(duì)數(shù)函數(shù)的真數(shù)大于零,求出函數(shù)的定義域;(2)先化簡(jiǎn)函數(shù)SKIPIF1<0的解析式,再根據(jù)二次函數(shù)性質(zhì)求最值.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,∴函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.(2)SKIPIF1<0.∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是增函數(shù);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是減函數(shù),故函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值是SKIPIF1<0.【點(diǎn)睛】研究二次函數(shù)最值,一般通過(guò)研究對(duì)稱軸與定義區(qū)間位置關(guān)系得函數(shù)單調(diào)性,再根據(jù)單調(diào)性確定函數(shù)最值取法.18.(2022·全國(guó)·高三專題練習(xí)(理))已知函數(shù)SKIPIF1<0定義在SKIPIF1<0上有SKIPIF1<0恒成立,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求SKIPIF1<0的值及函數(shù)SKIPIF1<0的解析式;(2)求函數(shù)SKIPIF1<0的值域.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用奇函數(shù)的性質(zhì)進(jìn)行計(jì)算.(2)利用換元法結(jié)合一元二次函數(shù)的性質(zhì)求出當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的取值范圍,再根據(jù)奇函數(shù)的性質(zhì),即可求出函數(shù)的值域.【詳解】解:(1)因?yàn)楹瘮?shù)SKIPIF1<0定義在SKIPIF1<0上有SKIPIF1<0恒成立所以函數(shù)SKIPIF1<0為奇函數(shù),又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0.所以SKIPIF1<0,因?yàn)镾KIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0.所以函數(shù)SKIPIF1<0的解析式為SKIPIF1<0.(2)令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0可寫(xiě)為SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0.即函數(shù)的值域?yàn)镾KIPIF1<0.19.(2022·廣東·小欖中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0是奇函數(shù).(1)求SKIPIF1<0的值;(2)已知SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由SKIPIF1<0求出參數(shù)值,再檢驗(yàn)即可;(2)先判斷函數(shù)SKIPIF1<0的單調(diào)性,然后根據(jù)單調(diào)性列出不等式求解即可.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0是奇函數(shù),則SKIPIF1<0,解得SKIPIF1<0;經(jīng)檢驗(yàn)SKIPIF1<0,故SKIPIF1<0成立;(2)因?yàn)镾KIPIF1<0對(duì)任意SKIPIF1<0,有SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增又SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<020.(2022·河南·濮陽(yáng)南樂(lè)一高高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0是偶函數(shù).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),求實(shí)數(shù)a的取值范圍;(3)已知SKIPIF1<0,試討論SKIPIF1<0的零點(diǎn)個(gè)數(shù),并求對(duì)應(yīng)的m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(3)答案見(jiàn)解析【分析】(1)根據(jù)偶函數(shù)的定義求解即可.(2)根據(jù)(1)做出SKIPIF1<0圖像,數(shù)形結(jié)合.(3)根據(jù)(1)做出SKIPIF1<0圖像,數(shù)形結(jié)合.【詳解】(1)設(shè)SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0為偶函數(shù)∴SKIPIF1<0綜上,有SKIPIF1<0(2)由(1)作出SKIPIF1<0的圖像如圖:因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上具有單調(diào)性,由圖可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0或SKIPIF1<0.(3)由(1)作出SKIPIF1<0的圖像如圖:由圖像可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有兩個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有四個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有六個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有三個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0沒(méi)有零點(diǎn).21.(2022·陜西·漢中市龍崗學(xué)校高三階段練習(xí)(文))設(shè)函數(shù)SKIPIF1<0.(1)求不等式SKIPIF1<0的解集;(2)若SKIPIF1<0的最大值為m,實(shí)數(shù)a,b滿足SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)1【分析】(1)將函數(shù)寫(xiě)成分段函數(shù),再分類討論,即可求出不等式的解集;(2)首先得到SKIPIF1<0的函數(shù)圖象,即可得到SKIPIF1<0,則SKIPIF1<0,在根據(jù)SKIPIF1<0的幾何意義計(jì)算可得;【詳解】(1)解:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0,即不等式的解集為SKIPIF1<0.(2)解:由(1)可得SKIPIF1<0的函數(shù)圖象如下所示:所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的幾何意義為圓SKIPIF1<0上的點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0距離的平方,顯然SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.22.(2022·福建省漳州市第八中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且它的圖象關(guān)于直線SKIPIF1<0對(duì)稱.(1)求證:SKIPIF1<0是周期為4的周期函數(shù);(2)若SKIPIF1<0,求SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的解析式.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【分析】(1)由函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,可得SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0是奇函數(shù),所以SKIPIF1<0,從而得SKIPIF1<0,即可得周期為4;(2)先求得SKIPIF1<0時(shí),SKIPIF1<0,再結(jié)合周期為4,即求得SKIPIF1<0在SKIPIF1<0上的解析式.【詳解】(1)解:證明:由函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,有SKIPIF1<0,即有SKIPIF1<0,又函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),有SKIPIF1<0,故SKIPIF1<0,從而SKIPIF1<0,即SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù);(2)解:由函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),有SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,從而,SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的解析式為SKIPIF1<0【提能力】一、單選題1.(2022·天津市建華中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先求出SKIPIF1<0的定義域,再根據(jù)分母不為零和前者可求題設(shè)中函數(shù)的定義域.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故函數(shù)SKIPIF1<0中的SKIPIF1<0需滿足:SKIPIF1<0,故SKIPIF1<0,故函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.故選:C2.(2017·河北定州中學(xué)高三階段練習(xí))若函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】令SKIPIF1<0,則SKIPIF1<0取遍SKIPIF1<0上的所有實(shí)數(shù),就SKIPIF1<0結(jié)合對(duì)應(yīng)函數(shù)的圖象可得實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】由值域?yàn)镾KIPIF1<0,可知SKIPIF1<0取遍SKIPIF1<0上的所有實(shí)數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0能取遍SKIPIF1<0上的所有實(shí)數(shù),只需定義域滿足SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),要保證SKIPIF1<0能取遍SKIPIF1<0上的所有實(shí)數(shù),需SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故選:D.【點(diǎn)睛】本題考查函數(shù)的值域,要注意定義域是SKIPIF1<0、與值域是為SKIPIF1<0的兩個(gè)題型的區(qū)別,值域?yàn)镾KIPIF1<0,可知SKIPIF1<0取遍SKIPIF1<0上的所有實(shí)數(shù),而定義域是SKIPIF1<0,是SKIPIF1<0SKIPIF1<0恒成立.3.(2022·湖北·南漳縣第二中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出函數(shù)SKIPIF1<0在SKIPIF1<0時(shí)值的集合,函數(shù)SKIPIF1<0在SKIPIF1<0時(shí)值的集合,再由已知并借助集合包含關(guān)系即可作答.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上值的集合是SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上值的集合為SKIPIF1<0,因函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,于是得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D4.(2022·天津市濱海新區(qū)塘沽第一中學(xué)高三階段練習(xí))已知奇函數(shù)SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上是增函數(shù).若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0是奇函數(shù),從而SKIPIF1<0是SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0上是增函數(shù),SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選C.【考點(diǎn)】指數(shù)、對(duì)數(shù)、函數(shù)的單調(diào)性【名師點(diǎn)睛】比較大小是高考常見(jiàn)題,指數(shù)式、對(duì)數(shù)式的比較大小要結(jié)合指數(shù)函數(shù)、對(duì)數(shù)函數(shù),借助指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的圖象,利用函數(shù)的單調(diào)性進(jìn)行比較大小,特別是靈活利用函數(shù)的奇偶性和單調(diào)性數(shù)形結(jié)合不僅能比較大小,還可以解不等式.5.(2022·天津市第四中學(xué)高三階段練習(xí))函數(shù)SKIPIF1<0的圖像為(

)A. B.C. D.【答案】D【分析】分析函數(shù)SKIPIF1<0的定義域、奇偶性、單調(diào)性及其在SKIPIF1<0上的函數(shù)值符號(hào),結(jié)合排除法可得出合適的選項(xiàng).【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),A選項(xiàng)錯(cuò)誤;又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,C選項(xiàng)錯(cuò)誤;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0函數(shù)單調(diào)遞增,故B選項(xiàng)錯(cuò)誤;故選:D.6.(2020·山西省新絳中學(xué)校高三階段練習(xí)(文))已知定義在R上的函數(shù)SKIPIF1<0為偶函數(shù),記SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0為偶函數(shù)得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選B.考點(diǎn):本題主要考查函數(shù)奇偶性及對(duì)數(shù)運(yùn)算.7.(2022·河北·安新縣第二中學(xué)高三階段練習(xí))函數(shù)SKIPIF1<0對(duì)任意SKIPIF1<0,都有SKIPIF1<0的圖形關(guān)于SKIPIF1<0對(duì)稱,且SKIPIF1<0

則SKIPIF1<0(

)A.-1 B.1 C.0 D.2【答案】B【分析】根據(jù)題意得到函數(shù)周期為12,函數(shù)為奇函數(shù),據(jù)此得到SKIPIF1<0,計(jì)算得到答案.【詳解】SKIPIF1<0函數(shù)周期為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖形關(guān)于SKIPIF1<0對(duì)稱,故SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,SKIPIF1<0.故SKIPIF1<0.故選:B.8.(2021·四川·眉山市彭山區(qū)第一中學(xué)高三階段練習(xí)(理))已知定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0為偶函數(shù),若SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,則下面結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可判斷函數(shù)f(x)的周期為6,對(duì)稱軸為x=3,所以有f(12.5)=f(0.5),f(-4.5)=f(1.5),f(3.5)=f(2.5),因?yàn)?<0.5<1.5<2.5<3,且函數(shù)在(0,3)內(nèi)單調(diào)遞減,從而判斷大小【詳解】∵函數(shù)SKIPIF1<0滿足SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∴f(x)在R上是以6為周期的函數(shù),∴f(12.5)=f(12+0.5)=f(0.5),SKIPIF1<0又SKIPIF1<0為偶函數(shù),∴f(x)的對(duì)稱軸為x=3,∴f(3.5)=f(2.5),又∵0<0.5<1.5<2.5<3,且SKIPIF1<0在(0,3)內(nèi)單調(diào)遞減,∴f(2.5)<f(1.5)<f(0.5)即f(3.5)<f(-4.5)<f(12.5)故選B.【點(diǎn)睛】本題主要考查了函數(shù)周期性與對(duì)稱性的推導(dǎo),考查了周期與單調(diào)性的綜合運(yùn)用,利用周期與對(duì)稱把所要比較的變量轉(zhuǎn)化到同一單調(diào)區(qū)間,利用函數(shù)的單調(diào)性比較函數(shù)值的大小,是解決此類問(wèn)題的常用方法,屬于中檔題.二、多選題9.(2022·山東·汶上圣澤中學(xué)高三階段練習(xí))下列說(shuō)法正確的是(

)A.若SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0的定義域?yàn)镾KIPIF1<0B.函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0C.函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0D.函數(shù)SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0【答案】AC【分析】根據(jù)抽象函數(shù)的定義域的求解判斷A;利用分離常數(shù)化簡(jiǎn)函數(shù)解析式,結(jié)合反比型函數(shù)的值域判斷B;利用換元法,結(jié)合二次函數(shù)的性質(zhì)求得其值域,判斷C;利用配方法,結(jié)合二次函數(shù)的性質(zhì)判斷D.【詳解】對(duì)于A,因?yàn)镾KIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故A正確;對(duì)于B,SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故B不正確;對(duì)于C,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),該函數(shù)取得最大值,最大值為SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故C正確;對(duì)于D,SKIPIF1<0,其圖象的對(duì)稱軸為直線SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,故D不正確.故選:AC.10.(2022·山東省泰安英雄山中學(xué)高三階段練習(xí))已知定義在R上的奇函數(shù)SKIPIF1<0對(duì)SKIPIF1<0都有SKIPIF1<0,則下列判斷正確的是(

)A.SKIPIF1<0是周期函數(shù)且周期為4 B.SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱C.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱 D.SKIPIF1<0在SKIPIF1<0上至少有5個(gè)零點(diǎn)【答案】ACD【分析】ABC選項(xiàng)根據(jù)函數(shù)的奇偶性和對(duì)稱性化簡(jiǎn)得出結(jié)論;D選項(xiàng)利用奇偶性得到SKIPIF1<0,以及周期性和對(duì)稱性得出結(jié)論.【詳解】A選項(xiàng):因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0周期為4,故A項(xiàng)正確;B選項(xiàng):因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,故B項(xiàng)錯(cuò)誤;C選項(xiàng):因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,故C項(xiàng)正確;D選項(xiàng):因?yàn)镾KIPIF1<0為定義在R上的奇函數(shù),所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故D項(xiàng)正確.故選:ACD.11.(2021·江蘇·無(wú)錫市第六高級(jí)中學(xué)高三階段練習(xí))高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù),例如:SKIPIF1<0,SKIPIF1<0.已知函數(shù)SKIPIF1<0,則關(guān)于函數(shù)SKIPIF1<0的敘述中正確的是(

)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0在SKIPIF1<0上是增函數(shù) D.SKIPIF1<0的值域是SKIPIF1<0【答案】BC【解析】計(jì)算SKIPIF1<0得出SKIPIF1<0判斷選項(xiàng)A不正確;用函數(shù)的奇偶性定義,可證SKIPIF1<0是奇函數(shù),選項(xiàng)B正確;通過(guò)分離常數(shù)結(jié)合復(fù)合函數(shù)的單調(diào)性,可得出SKIPIF1<0在R上是增函數(shù),判斷選項(xiàng)C正確;由SKIPIF1<0的范圍,利用不等式的關(guān)系,可求出SKIPIF1<0,選項(xiàng)D不正確,即可求得結(jié)果.【詳解】根據(jù)題意知,SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴函數(shù)SKIPIF1<0既不是奇函數(shù)也不是偶函數(shù),A錯(cuò)誤;SKIPIF1<0,∴SKIPIF1<0是奇函數(shù),B正確;SKIPIF1<0在R上是增函數(shù),由復(fù)合函數(shù)的單調(diào)性知SKIPIF1<0在R上是增函數(shù),C正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D錯(cuò)誤.故選:BC.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題是一道以數(shù)學(xué)文化為背景,判斷函數(shù)性質(zhì)的習(xí)題,屬于中檔題型,本題的關(guān)鍵是理解函數(shù)SKIPIF1<0,然后才會(huì)對(duì)函數(shù)SKIPIF1<0變形,并作出判斷.12.(2022·江蘇·南京市秦淮中學(xué)高三階段練習(xí))函數(shù)SKIPIF1<0對(duì)SKIPIF1<0恒成立,則SKIPIF1<0的取值可能是(

)A.0 B.2 C.1 D.3【答案】BD【分析】令SKIPIF1<0,將不等式SKIPIF1<0變成SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,分離常數(shù)可得SKIPIF1<0,令SKIPIF1<0,求出SKIPIF1<0的單調(diào)性即可得出答案.【詳解】令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,等價(jià)于SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0的最大值為SKIPIF1<0,所以SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0為增函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.故選:BD.三、填空題13.(2019·江蘇·南通一中高三階段練習(xí))設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式SKIPIF1<0<0的解集為_(kāi)_______.【答案】(-1,0)∪(0,1)【分析】首先根據(jù)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,得到f(-1)=0,且在(-∞,0)上也是增函數(shù),從而將不等式轉(zhuǎn)化為SKIPIF1<0或SKIPIF1<0,進(jìn)而求得結(jié)果.【詳解】因?yàn)閒(x)為奇函數(shù),且在(0,+∞)上是增函數(shù),f(1)=0,所以f(-1)=-f(1)=0,且在(-∞,0)上也是增

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論