版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Lesson21IntroductiontoArtificialIntelligence
(第二十一課現代人工智能簡介)
Vocabulary(詞匯)ImportantSentences(重點句)Multiple-choiceQuestions(多選題)Problems(問題)
HumankindhasgivenitselfthescientificnameHomosapiens—manthewise—becauseourmentalcapacitiesaresoimportanttooureverydaylivesandoursenseofself.Thefieldofartificialintelligence,orAI,attemptstounderstandintelligententities.Thus,onereasontostudyitistolearnmoreaboutourselves.Butunlikephilosophyandpsychology,whicharealsoconcernedwithintelligence,AIstrivestobuildintelligententitiesaswellasunderstandthem.AnotherreasontostudyAIisthattheseconstructedintelligententitiesareinterestingandusefulintheirownright.AIhasproducedmanysignificantandimpressiveproductsevenatthisearlystageinitsdevelopment.Althoughnoonecanpredictthefutureindetail,itisclearthatcomputerswithhuman-levelintelligence(orbetter)wouldhaveahugeimpactonoureverydaylivesandonthefuturecourseofcivilization.[1]
AIaddressesoneoftheultimatepuzzles.Howisitpossibleforaslow,tinybrain,whetherbiologicalorelectronic,toperceive,understand,predict,andmanipulateaworldfarlargerandmorecomplicatedthanitself?Howdowegoaboutmakingsomethingwiththoseproperties?Thesearehardquestions,butunlikethesearchforfaster-than-lighttraveloranantigravitydevice,theresearcherinAIhassolidevidencethatthequestispossible.Alltheresearcherhastodoislookinthemirrortoseeanexampleofanintelligentsystem.
AIisoneofthenewestdisciplines.Itwasformallyinitiatedin1956,whenthenamewascoined,althoughatthatpointworkhadbeenunderwayforaboutfiveyears.Alongwithmoderngenetics,itisregularlycitedasthe“fieldIwouldmostliketobein”byscientistsinotherdisciplines.AstudentinphysicsmightreasonablyfeelthatallthegoodideashavealreadybeentakenbyGalileo,Newton,Einstein,andtherest,andthatittakesmanyyearsofstudybeforeonecancontributenewideas.AI,ontheotherhand,stillhasopeningsforafull-timeEinstein.
AIcurrentlyencompassesahugevarietyofsubfields,fromgeneral-purposeareassuchasperceptionandlogicalreasoning,tospecifictaskssuchasplayingchess,provingmathematicaltheorems,writingpoetry,anddiagnosingdiseases.Often,scientistsinotherfieldsmovegraduallyintoartificialintelligence,wheretheyfindthetoolsandvocabularytosystematizeandautomatetheintellectualtasksonwhichtheyhavebeenworkingalltheirlives.[2]Similarly,workersinAIcanchoosetoapplytheirmethodstoanyareaofhumanintellectualendeavor.Inthissense,itistrulyauniversalfield.1WhatisAI?
WehavenowexplainedwhyAIisexciting,butwehavenotsaidwhatitis.Definitionsofartificialintelligenceaccordingtoeightrecenttextbooksareshowninthetablebelow.Thesedefinitionsvaryalongtwomaindimensions.Theonesontopareconcernedwiththoughtprocessesandreasoning,whereastheonesonthebottomaddressbehavior.Also,thedefinitionsontheleftmeasuresuccessintermsofhumanperformance,whereastheonesontherightmeasureagainstanidealconceptofintelligence,whichwewillcallrationality.Asystemisrationalifitdoestherightthing.Table.1AIDefinitionVaryalongtwomaindimensions
Thisgivesusfourpossiblegoalstopursueinartificialintelligence:
Historically,allfourapproacheshavebeenfollowed.Asonemightexpect,atensionexistsbetweenapproachescenteredaroundhumansandapproachescenteredaroundrationality.Ahuman-centeredapproachmustbeanempiricalscience,involvinghypothesisandexperimentalconfirmation.Arationalistapproachinvolvesacombinationofmathematicsandengineering.Peopleineachgroupsometimescastaspersionsonworkdoneintheothergroups,butthetruthisthateachdirectionhasyieldedvaluableinsights.Letuslookateachinmoredetail.2ActingHumanly:theTuringTestApproach
TheTuringTest,proposedbyAlanTuring(Turing,1950),wasdesignedtoprovideasatisfactoryoperationaldefinitionofintelligence.Turingdefinedintelligentbehaviorastheabilitytoachievehuman-levelperformanceinallcognitivetasks,sufficienttofoolaninterrogator.Roughlyspeaking,thetestheproposedisthatthecomputershouldbeinterrogatedbyahumanviaateletype,andpassesthetestiftheinterrogatorcannottellifthereisacomputerorahumanattheotherend.Programmingacomputertopassthetestprovidesplentytoworkon.Thecomputerwouldneedtopossessthefollowingcapabilities:
naturallanguageprocessingtoenableittocommunicatesuccessfullyinEnglish(orsomeotherhumanlanguage);
knowledgerepresentationtostoreinformationprovidedbeforeorduringtheinterrogation;
automatedreasoningtousethestoredinformationtoanswerquestionsandtodrawnewconclusions;
machinelearningtoadapttonewcircumstancesandtodetectandextrapolatepatterns.
Turing’stestdeliberatelyavoideddirectphysicalinteractionbetweentheinterrogatorandthecomputer,becausephysicalsimulationofapersonisunnecessaryforintelligence.[3]However,theso-calledtotalTuringTestincludesavideosignalsothattheinterrogatorcantestthesubject’sperceptualabilities,aswellastheopportunityfortheinterrogatortopassphysicalobjects“throughthehatch.”TopassthetotalTuringTest,thecomputerwillneed
computervisiontoperceiveobjects,and
roboticstomovethemabout.
WithinAI,therehasnotbeenabigefforttotrytopasstheTuringtest.TheissueofactinglikeahumancomesupprimarilywhenAIprogramshavetointeractwithpeople,aswhenanexpertsystemexplainshowitcametoitsdiagnosis,oranaturallanguageprocessingsystemhasadialoguewithauser.Theseprogramsmustbehaveaccordingtocertainnormalconventionsofhumaninteractioninordertomakethemselvesunderstood.Theunderlyingrepresentationandreasoninginsuchasystemmayormaynotbebasedonahumanmodel.3ThinkingHumanly:theCognitiveModellingApproach
Ifwearegoingtosaythatagivenprogramthinkslikeahuman,wemusthavesomewayofdetermininghowhumansthink.Weneedtogetinsidetheactualworkingsofhumanminds.Therearetwowaystodothis:throughintrospection—tryingtocatchourownthoughtsastheygoby—orthroughpsychologicalexperiments.Oncewehaveasufficientlyprecisetheoryofthemind,itbecomespossibletoexpressthetheoryasacomputerprogram.Iftheprogram’sinput/outputandtimingbehaviormatcheshumanbehavior,thatisevidencethatsomeoftheprogram’smechanismsmayalsobeoperatinginhumans.Forexample,NewellandSimon,whodevelopedGPS,the“GeneralProblemSolver”(NewellandSimon,1961),werenotcontenttohavetheirprogramcorrectlysolveproblems.Theyweremoreconcernedwithcomparingthetraceofitsreasoningstepstotracesofhumansubjectssolvingthesameproblems.Thisisincontrasttootherresearchersofthesametime(suchasWang(1960)),whowereconcernedwithgettingtherightanswersregardlessofhowhumansmightdoit.TheinterdisciplinaryfieldofcognitivesciencebringstogethercomputermodelsfromAIandexperimentaltechniquesfrompsychologytotrytoconstructpreciseandtestabletheoriesoftheworkingsofthehumanmind.[4]4Thinkingrationally:Thelawsofthoughtapproach
TheGreekphilosopherAristotlewasoneofthefirsttoattempttocodify“rightthinking,”thatis,irrefutablereasoningprocesses.Hisfamoussyllogismsprovidedpatternsforargumentstructuresthatalwaysgavecorrectconclusionsgivencorrectpremises.Forexample,“Socratesisaman;allmenaremortal;thereforeSocratesismortal.”Theselawsofthoughtweresupposedtogoverntheoperationofthemind,andinitiatedthefieldoflogic.
Thedevelopmentofformallogicinthelatenineteenthandearlytwentiethcenturies,providedaprecisenotationforstatementsaboutallkindsofthingsintheworldandtherelationsbetweenthem.(Contrastthiswithordinaryarithmeticnotation,whichprovidesmainlyforequalityandinequalitystatementsaboutnumbers.)By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionofaprobleminlogicalnotationandfindthesolutiontotheproblem,ifoneexists.(Ifthereisnosolution,theprogrammightneverstoplookingforit.)Theso-calledlogicisttraditionwithinartificialintelligencehopestobuildonsuchprogramstocreateintelligentsystems.
Therearetwomainobstaclestothisapproach.First,itisnoteasytotakeinformalknowledgeandstateitintheformaltermsrequiredbylogicalnotation,particularlywhentheknowledgeislessthan100%certain.Second,thereisabigdifferencebetweenbeingabletosolveaproblem“inprinciple”anddoingsoinpractice.Evenproblemswithjustafewdozenfactscanexhaustthecomputationalresourcesofanycomputerunlessithassomeguidanceastowhichreasoningstepstotryfirst.[5]Althoughbothoftheseobstaclesapplytoanyattempttobuildcomputationalreasoningsystems,theyappearedfirstinthelogicisttraditionbecausethepoweroftherepresentationandreasoningsystemsarewell-definedandfairlywellunderstood.5ActingRationally:theRationalAgentApproach
Actingrationallymeansactingsoastoachieveone’sgoals,givenone’sbeliefs.Anagentisjustsomethingthatperceivesandacts.(Thismaybeanunusualuseoftheword,butyouwillgetusedtoit.)Inthisapproach,AIisviewedasthestudyandconstructionofrationalagents.
Inthe“l(fā)awsofthought”approachtoAI,thewholeemphasiswasoncorrectinferences.Makingcorrectinferencesissometimespartofbeingarationalagent,becauseonewaytoactrationallyistoreasonlogicallytotheconclusionthatagivenactionwillachieveone’sgoals,andthentoactonthatconclusion.Ontheotherhand,correctinferenceisnotallofrationality,becausethereareoftensituationswherethereisnoprovablycorrectthingtodo,yetsomethingmuststillbedone.Therearealsowaysofactingrationallythatcannotbereasonablysaidtoinvolveinference.Forexample,pullingone’shandoffofahotstoveisareflexactionthatismoresuccessfulthanasloweractiontakenaftercarefuldeliberation.
Allthe“cognitiveskills”neededfortheTuringTestaretheretoallowrationalactions.Thus,weneedtheabilitytorepresentknowledgeandreasonwithitbecausethisenablesustoreachgooddecisionsinawidevarietyofsituations.Weneedtobeabletogeneratecomprehensiblesentencesinnaturallanguagebecausesayingthosesentenceshelpsusgetbyinacomplexsociety.Weneedlearningnotjustforerudition,butbecausehavingabetterideaofhowtheworldworksenablesustogeneratemoreeffectivestrategiesfordealingwithit.Weneedvisualperceptionnotjustbecauseseeingisfun,butinordertogetabetterideaofwhatanactionmightachieve—forexample,beingabletoseeatastymorselhelpsonetomovetowardit.
ThestudyofAIasrationalagentdesignthereforehastwoadvantages.First,itismoregeneralthanthe“l(fā)awsofthought”approach,becausecorrectinferenceisonlyausefulmechanismforachievingrationality,andnotanecessaryone.Second,itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviororhumanthought,becausethestandardofrationalityisclearlydefinedandcompletelygeneral.Humanbehavior,ontheotherhand,iswell-adaptedforonespecificenvironmentandistheproduct,inpart,ofacomplicatedandlargelyunknownevolutionaryprocessthatstillmaybefarfromachievingperfection.6TheStateoftheArt
InternationalgrandmasterArnoldDenkerstudiesthepiecesontheboardinfrontofhim.Herealizesthereisnohope;hemustresignthegame.Hisopponent,Hitech,becomesthefirstcomputerprogramtodefeatagrandmasterinagameofchess.
“IwanttogofromBostontoSanFrancisco,”thetravellersaysintothemicrophone.“Whatdatewillyoubetravellingon?”isthereply.ThetravellerexplainsshewantstogoOctober20th,nonstop,onthecheapestavailablefare,returningonSunday.AspeechunderstandingprogramnamedPegasushandlesthewholetransaction,whichresultsinaconfirmedreservationthatsavesthetraveller$894overtheregularcoachfare.Eventhoughthespeechrecognizergetsoneoutoftenwordswrong,itisabletorecoverfromtheseerrorsbecauseofitsunderstandingofhowdialogsareputtogether.
AnanalystintheMissionOperationsroomoftheJetPropulsionLaboratorysuddenlystartspayingattention.Aredmessagehasflashedontothescreenindicatingan“anomaly”withtheVoyagerspacecraft,whichissomewhereinthevicinityofNeptune.Fortunately,theanalystisabletocorrecttheproblemfromtheground.OperationspersonnelbelievetheproblemmighthavebeenoverlookedhaditnotbeenforMarvel,areal-timeexpertsystemthatmonitorsthemassivestreamofdatatransmittedbythespacecraft,handlingroutinetasksandalertingtheanalyststomoreseriousproblems.
CruisingthehighwayoutsideofPittsburghatacomfortable55mph,themaninthedriver’sseatseemsrelaxed.Heshouldbe—forthepast90miles,hehasnothadtotouchthesteeringwheel.Therealdriverisaroboticsystemthatgathersinputfromvideocameras,sonar,andlaserrangefindersattachedtothevan.Itcombinestheseinputswithexperiencelearnedfromtrainingrunsandsuccessfullycomputeshowtosteerthevehicle.
Aleadingexpertonlymph-nodepathologydescribesafiendishlydifficultcasetotheexpertsystem,andexaminesthesystem’sdiagnosis.Hescoffsatthesystem’sresponse.Onlyslightlyworried,thecreatorsofthesystemsuggestheaskthecomputerforanexplanationofthediagnosis.Themachinepointsoutthemajorfactorsinfluencingitsdecision,andexplainsthesubtleinteractionofseveralofthesymptomsinthiscase.Theexpertadmitshiserror,eventually.
Fromacameraperchedonastreetlightabovethecrossroads,thetrafficmonitorwatchesthescene.Ifanyhumanswereawaketoreadthemainscreen,theywouldsee“Citroen2CVturningfromPlacedelaConcordeintoChampsElysees,”“LargetruckofunknownmakestoppedonPlacedelaConcorde,”andsoonintothenight.Andoccasionally,“MajorincidentonPlacedelaConcorde,speedingvancollidedwithmotorcyclist,”andanautomaticcalltotheemergencyservices.
Thesearejustafewexamplesofartificialintelligencesystemsthatexisttoday.Notmagicorsciencefiction—butratherscience,engineering,andmathematics.1.?Homosapiensn.智人(現代人的學名)
2.?antigrarityn.反重力,反引力。
3.?endeavorn.努力,盡力vi.盡力,努力。
4.?dimensionn.尺寸,尺度,維(數),度(數),元。
5.?rationalityn.合理性,唯理性。
6.?hypothesisn.假設。Vocabulary
7.?aspersionn.灑水,誹謗,中傷。
8.?interrogatorn.訊問者,質問者。
9.?extrapolatev.推斷,[數]外推。
10.?cognitiveadj.認知的,認識的,有感知的。
11.?syllogismn.[邏]三段論法,推論法,演繹。
12.?mortaln.凡人,人類adj.必死的,致命的,人類的,臨終的。
13.?agentn.代理。
14.?inferencen.推論。
15.?stateoftheartn.技術發(fā)展水平。16.?Neptunen.[天]天王星。
17.?lymphn.淋巴腺,淋巴。
18.?pathologyn.病理學。
19.?fiendishlyadv.惡魔似地,極壞地。
20.?eruditionn.博學。
[1]Althoughnoonecanpredictthefutureindetail,itisclearthatcomputerswithhuman-levelintelligence(orbetter)wouldhaveahugeimpactonoureverydaylivesandonthefuturecourseofcivilization.
雖然沒有人可以詳細地預測未來,但是很顯然,具有人類智力水平(或更高水平)的電腦將會對我們的日常生活以及未來的文明進程產生巨大的影響。主句中it為形式主語,真正的主語是that引導的定語從句。ImportantSentences
[2]Often,scientistsinotherfieldsmovegraduallyintoartificialintelligence,wheretheyfindthetoolsandvocabularytosystematizeandautomatetheintellectualtasksonwhichtheyhavebeenworkingalltheirlives.
通常,其他領域的科學家逐步進入到了人工智能領域,他們在那里發(fā)現了能夠將他們一直所從事的工作系統化和自動化的工具和詞匯。where引導定語從句,修飾“artificialintelligence”。
[3]Turing’stestdeliberatelyavoideddirectphysicalinteractionbetweentheinterrogatorandthecomputer,becausephysicalsimulationofapersonisunnecessaryforintelligence.
圖靈測試刻意回避詢問者和計算機之間直接的物理交互,因為人的物理模擬對智能來說是不必要的。
[4]TheinterdisciplinaryfieldofcognitivesciencebringstogethercomputermodelsfromAIandexperimentaltechniquesfrompsychologytotrytoconstructpreciseandtestabletheoriesoftheworkingsofthehumanmind.
認知科學這個跨學科領域匯集了人工智能學的計算機模型以及心理學的實驗技巧,試圖構建人類頭腦運轉的準確的、可檢驗的理論。本句為一簡單句,結構為Theinterdisciplinaryfield…brings…to….。
[5]Evenproblemswithjustafewdozenfactscanexhaustthecomputationalresourcesofanycomputerunlessithassomeguidanceastowhichreasoningstepstotryfirst.
除非有應該首先執(zhí)行哪個推理步驟的提示,否則即使只有幾十個論據的問題也能耗盡任何一臺計算機的計算資源。
(1)?OnereasontostudyAIistolearnmoreaboutourselves,itisbecausethat().
A.?AIattemptstounderstandintelligententities
B.?AIattemptstobuildintelligententities
C.?AIisanintelligententities
D.?weareintelligententities
Multiple-choiceQuestions
(2)?Inthethirdparagraph,“AI,ontheotherhand,stillhasopeningsforafull-timeEinstein.”,whatisthemeaning?()
A.?InAI,there’remanynewideasforonetocontributeandmoreeasilytostudy.
B.?AIisnotoneofthenewestdisciplines.
C.?AllthegoodideashavealreadybeentakenbyGalileo,Newton,Einstein,andtherest.
D.?AIwasinitiatedformanyyears.
(3)?WhichistheTuringTest?
A.?Thecomputerandahumanshouldinterrogateeachother,andthec
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年長租公寓項目發(fā)展計劃
- 2024年高鐵廣告投放合同
- 教育培訓機構轉讓協議
- 保健按摩安全防護用品使用
- 辦公用品備用金管理細則
- 運動器材維護保養(yǎng)管理規(guī)定
- 廣州市物業(yè)公共信息發(fā)布平臺建設
- 私人銀行財務部管理辦法
- 旅游景區(qū)文化墻施工合同
- 招投標合同風險防范講座
- TSM0500G(阻燃性) 豐田試驗測試標準
- 疊合板施工工藝及質量控制要點
- 公共衛(wèi)生事業(yè)管理專業(yè)職業(yè)生涯規(guī)劃書
- GB/T 43232-2023緊固件軸向應力超聲測量方法
- 花藝師年度工作總結
- 新目標漢語口語課本2課件-第2單元
- 二手車買賣合同(標準版范本)
- 新產品的試制與導入
- 污水處理廠污泥處理處置投標方案
- 智能包裝設計智慧樹知到課后章節(jié)答案2023年下湖南工業(yè)大學
- 抖音快手短視頻創(chuàng)業(yè)項目融資商業(yè)計劃書模板(完整版)
評論
0/150
提交評論