湖南科技學(xué)院《大數(shù)據(jù)實(shí)時(shí)計(jì)算》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
湖南科技學(xué)院《大數(shù)據(jù)實(shí)時(shí)計(jì)算》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
湖南科技學(xué)院《大數(shù)據(jù)實(shí)時(shí)計(jì)算》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
湖南科技學(xué)院《大數(shù)據(jù)實(shí)時(shí)計(jì)算》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
湖南科技學(xué)院《大數(shù)據(jù)實(shí)時(shí)計(jì)算》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)湖南科技學(xué)院《大數(shù)據(jù)實(shí)時(shí)計(jì)算》

2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對(duì)于一個(gè)需要處理大量實(shí)時(shí)交易數(shù)據(jù)的電商大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠確保數(shù)據(jù)的一致性和事務(wù)的完整性?()A.分布式事務(wù)B.兩階段提交C.最終一致性D.以上都不是2、在大數(shù)據(jù)的聚類評(píng)估中,有多種指標(biāo)可以用來(lái)衡量聚類結(jié)果的質(zhì)量。假設(shè)我們對(duì)一個(gè)數(shù)據(jù)集進(jìn)行了聚類,以下哪個(gè)指標(biāo)不適合評(píng)估聚類的緊湊性?()A.輪廓系數(shù)B.Calinski-Harabasz指數(shù)C.Davies-Bouldin指數(shù)D.準(zhǔn)確率3、在一個(gè)大型金融機(jī)構(gòu)中,每天都會(huì)產(chǎn)生大量的交易數(shù)據(jù)。為了及時(shí)發(fā)現(xiàn)可能的欺詐行為,需要對(duì)這些數(shù)據(jù)進(jìn)行實(shí)時(shí)監(jiān)測(cè)和分析。以下哪種技術(shù)或框架最適合用于實(shí)現(xiàn)這種實(shí)時(shí)數(shù)據(jù)分析?()A.SparkStreamingB.HiveC.MySQLD.TensorFlow4、在大數(shù)據(jù)處理框架中,Storm常用于實(shí)時(shí)流處理。以下關(guān)于Storm的特點(diǎn),哪一項(xiàng)是錯(cuò)誤的?()A.支持分布式部署B(yǎng).具有高容錯(cuò)性C.處理數(shù)據(jù)的延遲較低D.不適合處理復(fù)雜的邏輯5、在大數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)可視化可以幫助用戶更好地理解數(shù)據(jù)。如果要展示數(shù)據(jù)隨時(shí)間的變化趨勢(shì),以下哪種可視化方式最直觀?()A.柱狀圖B.折線圖C.餅圖D.箱線圖6、在大數(shù)據(jù)的數(shù)據(jù)庫(kù)選擇中,NoSQL數(shù)據(jù)庫(kù)因其靈活的數(shù)據(jù)模型而受到關(guān)注。假設(shè)一個(gè)應(yīng)用需要存儲(chǔ)大量的非結(jié)構(gòu)化數(shù)據(jù),并且對(duì)數(shù)據(jù)的讀寫性能要求較高。以下哪種NoSQL數(shù)據(jù)庫(kù)最適合?()A.文檔數(shù)據(jù)庫(kù)B.鍵值數(shù)據(jù)庫(kù)C.列族數(shù)據(jù)庫(kù)D.圖數(shù)據(jù)庫(kù)7、在大數(shù)據(jù)存儲(chǔ)中,列式存儲(chǔ)和行式存儲(chǔ)各有優(yōu)缺點(diǎn)。以下關(guān)于列式存儲(chǔ)和行式存儲(chǔ)的比較,不準(zhǔn)確的是()A.列式存儲(chǔ)適合于批量數(shù)據(jù)讀取和分析,行式存儲(chǔ)適合于頻繁的單行數(shù)據(jù)更新B.列式存儲(chǔ)能夠提高數(shù)據(jù)壓縮比,節(jié)省存儲(chǔ)空間C.行式存儲(chǔ)在數(shù)據(jù)查詢時(shí)的性能優(yōu)于列式存儲(chǔ)D.列式存儲(chǔ)對(duì)于只涉及少數(shù)列的查詢具有優(yōu)勢(shì)8、在大數(shù)據(jù)存儲(chǔ)中,列式存儲(chǔ)和行式存儲(chǔ)各有優(yōu)缺點(diǎn)。如果主要進(jìn)行頻繁的列查詢操作,以下哪種存儲(chǔ)方式更合適?()A.列式存儲(chǔ)B.行式存儲(chǔ)C.兩者效果相同D.取決于數(shù)據(jù)量的大小9、在大數(shù)據(jù)的分布式存儲(chǔ)系統(tǒng)中,副本機(jī)制用于提高數(shù)據(jù)的可靠性。假設(shè)一個(gè)數(shù)據(jù)塊有三個(gè)副本存儲(chǔ)在不同的節(jié)點(diǎn)上,當(dāng)其中一個(gè)副本損壞時(shí),系統(tǒng)會(huì)如何處理?()A.立即從其他副本中恢復(fù)損壞的副本B.等待管理員手動(dòng)修復(fù)損壞的副本C.忽略損壞的副本,繼續(xù)正常運(yùn)行D.停止系統(tǒng)運(yùn)行,直到副本修復(fù)完成10、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)可視化的創(chuàng)新不斷涌現(xiàn)。以下關(guān)于新興的數(shù)據(jù)可視化形式,哪一項(xiàng)是不正確的?()A.虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)技術(shù)可以提供沉浸式的數(shù)據(jù)可視化體驗(yàn)B.動(dòng)態(tài)可視化能夠?qū)崟r(shí)反映數(shù)據(jù)的變化,增強(qiáng)用戶對(duì)數(shù)據(jù)的理解C.故事性可視化通過(guò)講述一個(gè)數(shù)據(jù)相關(guān)的故事來(lái)傳達(dá)信息,更具吸引力D.新興的數(shù)據(jù)可視化形式只是為了追求視覺效果,對(duì)數(shù)據(jù)分析的幫助不大11、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),需要考慮計(jì)算資源的分配和優(yōu)化。假設(shè)一個(gè)數(shù)據(jù)中心有有限的計(jì)算節(jié)點(diǎn),同時(shí)有多個(gè)大數(shù)據(jù)任務(wù)需要運(yùn)行。以下哪種資源分配策略最合理?()A.平均分配計(jì)算資源給每個(gè)任務(wù),確保公平性B.根據(jù)任務(wù)的優(yōu)先級(jí)分配資源,優(yōu)先保障重要任務(wù)C.按照任務(wù)的預(yù)計(jì)執(zhí)行時(shí)間分配資源,先處理短時(shí)間能完成的任務(wù)D.隨機(jī)分配資源,讓任務(wù)自行競(jìng)爭(zhēng)12、在大數(shù)據(jù)處理中,數(shù)據(jù)壓縮可以節(jié)省存儲(chǔ)空間和提高傳輸效率。以下哪種數(shù)據(jù)壓縮算法通常適用于文本數(shù)據(jù)?()A.LZ77B.RLEC.Huffman編碼D.以上都適用13、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行聚類分析,并且數(shù)據(jù)分布較為復(fù)雜,以下哪種聚類算法可能更有效?()A.K-MeansB.DBSCANC.層次聚類D.以上都有可能14、在大數(shù)據(jù)存儲(chǔ)中,為了提高數(shù)據(jù)的讀取性能,常常采用緩存機(jī)制。假設(shè)一個(gè)數(shù)據(jù)存儲(chǔ)系統(tǒng)中有一個(gè)熱點(diǎn)數(shù)據(jù)區(qū)域,經(jīng)常被訪問(wèn)。以下哪種緩存替換策略在這種情況下可能效果較好?()A.LRU(LeastRecentlyUsed)B.FIFO(FirstInFirstOut)C.LFU(LeastFrequentlyUsed)D.Random(隨機(jī))15、在大數(shù)據(jù)分析中,假設(shè)要對(duì)一個(gè)高維數(shù)據(jù)集進(jìn)行可視化,以下哪種技術(shù)可以幫助降低維度并展示數(shù)據(jù)的分布?()A.多維縮放B.自組織映射C.獨(dú)立成分分析D.以上都是16、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架發(fā)揮著重要作用。以下關(guān)于Hadoop生態(tài)系統(tǒng)中的MapReduce框架和Spark框架的比較,哪一項(xiàng)是錯(cuò)誤的?()A.MapReduce處理數(shù)據(jù)的速度通常比Spark慢B.Spark比MapReduce更適合進(jìn)行迭代計(jì)算C.MapReduce的容錯(cuò)性比Spark更強(qiáng)D.Spark能夠在內(nèi)存中緩存數(shù)據(jù),而MapReduce通常需要頻繁讀寫磁盤17、大數(shù)據(jù)的分析結(jié)果需要以有效的方式呈現(xiàn)給決策者。假設(shè)一個(gè)大數(shù)據(jù)分析項(xiàng)目得出了關(guān)于市場(chǎng)競(jìng)爭(zhēng)態(tài)勢(shì)的結(jié)論。以下哪種報(bào)告形式最能幫助決策者快速理解和做出決策?()A.詳細(xì)的技術(shù)報(bào)告B.簡(jiǎn)潔的摘要報(bào)告C.交互式的可視化儀表盤D.以上形式結(jié)合使用18、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)質(zhì)量的監(jiān)控是持續(xù)進(jìn)行的。如果發(fā)現(xiàn)數(shù)據(jù)質(zhì)量出現(xiàn)問(wèn)題,以下哪個(gè)是首要的解決步驟?()A.分析問(wèn)題的根源B.修復(fù)數(shù)據(jù)C.通知相關(guān)人員D.記錄問(wèn)題19、在利用大數(shù)據(jù)進(jìn)行客戶細(xì)分時(shí),以下哪種方法可以自動(dòng)確定細(xì)分的類別數(shù)量?()A.K-Means聚類B.層次聚類C.密度聚類D.以上都不行20、大數(shù)據(jù)的分析結(jié)果需要進(jìn)行有效的解釋和溝通。假設(shè)一個(gè)市場(chǎng)調(diào)研的大數(shù)據(jù)分析項(xiàng)目,得出了關(guān)于消費(fèi)者行為的一些結(jié)論。以下哪種方式最能幫助非技術(shù)人員理解和接受這些分析結(jié)果?()A.技術(shù)報(bào)告和數(shù)據(jù)表格B.可視化圖表和簡(jiǎn)潔的文字說(shuō)明C.復(fù)雜的數(shù)學(xué)公式和算法描述D.專業(yè)術(shù)語(yǔ)和行業(yè)標(biāo)準(zhǔn)解釋21、在大數(shù)據(jù)項(xiàng)目中,數(shù)據(jù)安全策略的制定需要考慮多方面因素。如果要確保數(shù)據(jù)在傳輸過(guò)程中的安全性,以下哪種技術(shù)可以使用?()A.數(shù)據(jù)加密B.訪問(wèn)控制C.數(shù)據(jù)備份D.數(shù)據(jù)壓縮22、在大數(shù)據(jù)分析中,關(guān)聯(lián)規(guī)則挖掘常用于發(fā)現(xiàn)數(shù)據(jù)中的相關(guān)性。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述,哪一項(xiàng)是錯(cuò)誤的?()A.關(guān)聯(lián)規(guī)則挖掘可以幫助商家發(fā)現(xiàn)哪些商品經(jīng)常被一起購(gòu)買B.關(guān)聯(lián)規(guī)則的支持度和置信度是衡量其重要性的兩個(gè)關(guān)鍵指標(biāo)C.關(guān)聯(lián)規(guī)則挖掘的結(jié)果總是準(zhǔn)確無(wú)誤的,無(wú)需進(jìn)一步驗(yàn)證D.可以通過(guò)調(diào)整支持度和置信度的閾值來(lái)獲得更有意義的關(guān)聯(lián)規(guī)則23、在構(gòu)建大數(shù)據(jù)處理系統(tǒng)時(shí),考慮到系統(tǒng)的可擴(kuò)展性和容錯(cuò)性,以下哪種分布式計(jì)算框架通常是首選?()A.MapReduceB.MPIC.StormD.TensorFlow24、對(duì)于一個(gè)需要實(shí)時(shí)處理和分析大量流數(shù)據(jù)的應(yīng)用場(chǎng)景,例如實(shí)時(shí)監(jiān)控交通流量,以下哪種技術(shù)架構(gòu)最適合?()A.Hadoop生態(tài)系統(tǒng)B.Spark流處理框架C.傳統(tǒng)的數(shù)據(jù)倉(cāng)庫(kù)D.關(guān)系型數(shù)據(jù)庫(kù)25、在大數(shù)據(jù)的背景下,數(shù)據(jù)治理變得越來(lái)越重要。假設(shè)一個(gè)組織擁有多個(gè)部門,每個(gè)部門都有自己的數(shù)據(jù)管理方式和標(biāo)準(zhǔn)。以下哪種數(shù)據(jù)治理策略最能促進(jìn)數(shù)據(jù)的共享和一致性?()A.建立統(tǒng)一的數(shù)據(jù)治理框架和標(biāo)準(zhǔn)B.讓各部門自行管理數(shù)據(jù),互不干擾C.只關(guān)注核心業(yè)務(wù)數(shù)據(jù)的治理D.定期清理不需要的數(shù)據(jù)26、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行分類,并且數(shù)據(jù)具有多個(gè)類別,以下哪種機(jī)器學(xué)習(xí)算法可能更適合?()A.樸素貝葉斯B.K近鄰C.多層感知機(jī)D.支持向量機(jī)27、大數(shù)據(jù)在農(nóng)業(yè)領(lǐng)域有潛在的應(yīng)用價(jià)值。以下關(guān)于大數(shù)據(jù)在農(nóng)業(yè)中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析土壤、氣候和作物生長(zhǎng)數(shù)據(jù)優(yōu)化種植方案B.有助于預(yù)測(cè)農(nóng)產(chǎn)品的市場(chǎng)價(jià)格,指導(dǎo)農(nóng)民合理安排生產(chǎn)C.大數(shù)據(jù)在農(nóng)業(yè)中的應(yīng)用受到農(nóng)村地區(qū)網(wǎng)絡(luò)基礎(chǔ)設(shè)施落后的限制D.由于農(nóng)業(yè)生產(chǎn)的復(fù)雜性和不確定性,大數(shù)據(jù)在農(nóng)業(yè)中的應(yīng)用前景不樂(lè)觀28、在電商領(lǐng)域,大數(shù)據(jù)可以用于精準(zhǔn)營(yíng)銷。以下關(guān)于大數(shù)據(jù)在電商精準(zhǔn)營(yíng)銷中的作用,哪一個(gè)是不準(zhǔn)確的?()A.可以根據(jù)用戶的瀏覽和購(gòu)買歷史為其推薦相關(guān)商品B.能夠分析市場(chǎng)趨勢(shì),幫助商家提前準(zhǔn)備庫(kù)存C.大數(shù)據(jù)精準(zhǔn)營(yíng)銷只能針對(duì)新用戶,對(duì)老用戶效果不佳D.可以通過(guò)分析用戶行為數(shù)據(jù),優(yōu)化網(wǎng)站的頁(yè)面布局和流程29、大數(shù)據(jù)在醫(yī)療健康領(lǐng)域的應(yīng)用面臨一些挑戰(zhàn),以下哪一項(xiàng)不是其面臨的挑戰(zhàn)?()A.數(shù)據(jù)隱私保護(hù)B.數(shù)據(jù)質(zhì)量問(wèn)題C.技術(shù)人才短缺D.醫(yī)療數(shù)據(jù)量不足30、大數(shù)據(jù)中的實(shí)時(shí)流處理引擎如ApacheFlink在處理實(shí)時(shí)數(shù)據(jù)方面具有優(yōu)勢(shì)。以下關(guān)于Flink的特點(diǎn),哪一項(xiàng)是不正確的?()A.Flink支持精確一次的語(yǔ)義,確保數(shù)據(jù)處理的準(zhǔn)確性和一致性B.它具有高吞吐和低延遲的性能,能夠快速處理大量的實(shí)時(shí)數(shù)據(jù)C.Flink只能處理流數(shù)據(jù),不支持對(duì)歷史數(shù)據(jù)的批處理操作D.Flink提供了豐富的窗口函數(shù)和狀態(tài)管理機(jī)制,便于進(jìn)行復(fù)雜的實(shí)時(shí)計(jì)算二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Hive對(duì)一個(gè)大規(guī)模的用戶搜索關(guān)鍵詞數(shù)據(jù)集進(jìn)行語(yǔ)義分析,找出相關(guān)的搜索意圖和需求。2、(本題5分)用Scala實(shí)現(xiàn)一個(gè)程序,處理來(lái)自智能電表的大量電力使用數(shù)據(jù)。找出用電量最高的10個(gè)時(shí)間段,并計(jì)算這些時(shí)間段的總用電量。3、(本題5分)使用Python的Hadoop框架,對(duì)一個(gè)包含城市路燈照明數(shù)據(jù)的大數(shù)據(jù)集進(jìn)行分析。找出照明時(shí)間最長(zhǎng)的10條街道,并計(jì)算這些街道的平均照明時(shí)間。4、(本題5分)利用Python中的Spark框架,從一個(gè)包含用戶購(gòu)買記錄的大型CSV文件中提取出購(gòu)買金額超過(guò)1000元的用戶信息,并計(jì)算這些用戶的平均購(gòu)買金額。文件中的數(shù)據(jù)量較大,需要考慮性能優(yōu)化。5、(本題5分)用Scala實(shí)現(xiàn)一個(gè)程序,處理來(lái)自能源監(jiān)測(cè)系統(tǒng)的大量能源消耗數(shù)據(jù)。找出能源消耗最高的10個(gè)時(shí)間段,并計(jì)算這些時(shí)間段的平

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論