版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁首都經(jīng)濟(jì)貿(mào)易大學(xué)
《機(jī)器學(xué)習(xí)理論(雙語)》2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在使用深度學(xué)習(xí)進(jìn)行圖像分類時(shí),數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個(gè)有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項(xiàng)是不正確的?()A.可以通過隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來增加數(shù)據(jù)的多樣性B.對(duì)圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過擬合,但會(huì)增加數(shù)據(jù)標(biāo)注的工作量D.過度的數(shù)據(jù)增強(qiáng)可能會(huì)導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無關(guān)的特征,影響模型性能2、在進(jìn)行自動(dòng)特征工程時(shí),以下關(guān)于自動(dòng)特征工程方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動(dòng)提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動(dòng)特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動(dòng)特征工程需要大量的計(jì)算資源和時(shí)間,但可以提高特征工程的效率3、在一個(gè)圖像分類任務(wù)中,模型在訓(xùn)練集上表現(xiàn)良好,但在測試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因?qū)е碌模浚ǎ〢.過擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當(dāng)4、在評(píng)估機(jī)器學(xué)習(xí)模型的性能時(shí),通常會(huì)使用多種指標(biāo)。假設(shè)我們有一個(gè)二分類模型,用于預(yù)測患者是否患有某種疾病。以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測為正例的樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評(píng)估,值越小表示模型性能越好5、想象一個(gè)圖像分類的競賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高6、假設(shè)正在研究一個(gè)自然語言處理任務(wù),需要對(duì)句子進(jìn)行語義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長短時(shí)記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點(diǎn)7、在進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練時(shí),過擬合是一個(gè)常見的問題。假設(shè)我們正在訓(xùn)練一個(gè)決策樹模型來預(yù)測客戶是否會(huì)購買某種產(chǎn)品,給定了客戶的個(gè)人信息和購買歷史等數(shù)據(jù)。以下關(guān)于過擬合的描述和解決方法,哪一項(xiàng)是錯(cuò)誤的?()A.過擬合表現(xiàn)為模型在訓(xùn)練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳B.增加訓(xùn)練數(shù)據(jù)的數(shù)量可以有效地減少過擬合的發(fā)生C.對(duì)決策樹進(jìn)行剪枝操作,即刪除一些不重要的分支,可以防止過擬合D.降低模型的復(fù)雜度,例如減少?zèng)Q策樹的深度,會(huì)導(dǎo)致模型的擬合能力下降,無法解決過擬合問題8、在機(jī)器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個(gè)城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.對(duì)原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計(jì)算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對(duì)目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進(jìn)行一次,后續(xù)不需要再進(jìn)行調(diào)整和優(yōu)化9、在機(jī)器學(xué)習(xí)中,特征選擇是一項(xiàng)重要的任務(wù),旨在從眾多的原始特征中選擇出對(duì)模型性能有顯著影響的特征。假設(shè)我們有一個(gè)包含大量特征的數(shù)據(jù)集,在進(jìn)行特征選擇時(shí),以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標(biāo)變量高度相關(guān)的特征B.隨機(jī)選擇一部分特征,進(jìn)行試驗(yàn)和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識(shí)和經(jīng)驗(yàn),手動(dòng)選擇特征10、在一個(gè)強(qiáng)化學(xué)習(xí)場景中,智能體需要在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí)最優(yōu)策略。如果環(huán)境的獎(jiǎng)勵(lì)信號(hào)稀疏,以下哪種技術(shù)可以幫助智能體更好地學(xué)習(xí)?()A.獎(jiǎng)勵(lì)塑造B.策略梯度估計(jì)的改進(jìn)C.經(jīng)驗(yàn)回放D.以上技術(shù)都可以11、在構(gòu)建一個(gè)圖像識(shí)別模型時(shí),需要對(duì)圖像數(shù)據(jù)進(jìn)行預(yù)處理和增強(qiáng)。如果圖像存在光照不均、噪聲和模糊等問題,以下哪種預(yù)處理和增強(qiáng)技術(shù)組合可能最為有效?()A.直方圖均衡化、中值濾波和銳化B.灰度變換、高斯濾波和圖像翻轉(zhuǎn)C.色彩空間轉(zhuǎn)換、均值濾波和圖像縮放D.對(duì)比度拉伸、雙邊濾波和圖像旋轉(zhuǎn)12、在一個(gè)回歸問題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以13、在進(jìn)行圖像識(shí)別任務(wù)時(shí),需要對(duì)大量的圖像數(shù)據(jù)進(jìn)行特征提取。假設(shè)我們有一組包含各種動(dòng)物的圖像,要區(qū)分貓和狗。如果采用傳統(tǒng)的手工設(shè)計(jì)特征方法,可能會(huì)面臨諸多挑戰(zhàn),例如特征的選擇和設(shè)計(jì)需要豐富的專業(yè)知識(shí)和經(jīng)驗(yàn)。而使用深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征。那么,以下關(guān)于CNN在圖像特征提取方面的描述,哪一項(xiàng)是正確的?()A.CNN只能提取圖像的低級(jí)特征,如邊緣和顏色B.CNN能夠同時(shí)提取圖像的低級(jí)和高級(jí)語義特征,具有強(qiáng)大的表達(dá)能力C.CNN提取的特征與圖像的內(nèi)容無關(guān),主要取決于網(wǎng)絡(luò)結(jié)構(gòu)D.CNN提取的特征是固定的,無法根據(jù)不同的圖像數(shù)據(jù)集進(jìn)行調(diào)整14、在一個(gè)金融風(fēng)險(xiǎn)預(yù)測的項(xiàng)目中,需要根據(jù)客戶的信用記錄、收入水平、負(fù)債情況等多種因素來預(yù)測其違約的可能性。同時(shí),要求模型能夠適應(yīng)不斷變化的市場環(huán)境和新的數(shù)據(jù)特征。以下哪種模型架構(gòu)和訓(xùn)練策略可能是最恰當(dāng)?shù)??()A.構(gòu)建一個(gè)線性回歸模型,簡單直觀,易于解釋和更新,但可能無法處理復(fù)雜的非線性關(guān)系B.選擇邏輯回歸模型,結(jié)合正則化技術(shù)防止過擬合,能夠處理二分類問題,但對(duì)于多因素的復(fù)雜關(guān)系表達(dá)能力有限C.建立多層感知機(jī)神經(jīng)網(wǎng)絡(luò),通過調(diào)整隱藏層的數(shù)量和節(jié)點(diǎn)數(shù)來捕捉復(fù)雜關(guān)系,但訓(xùn)練難度較大,容易過擬合D.采用基于隨機(jī)森林的集成學(xué)習(xí)方法,結(jié)合特征選擇和超參數(shù)調(diào)優(yōu),能夠處理多因素和非線性關(guān)系,且具有較好的穩(wěn)定性和泛化能力15、在特征工程中,獨(dú)熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)說明機(jī)器學(xué)習(xí)在合成生物學(xué)中的設(shè)計(jì)優(yōu)化。2、(本題5分)機(jī)器學(xué)習(xí)在精神醫(yī)學(xué)中的研究成果有哪些?3、(本題5分)談?wù)剬哟尉垲愃惴ǖ幕舅枷搿?、(本題5分)談?wù)勗趫D像識(shí)別中,常用的機(jī)器學(xué)習(xí)技術(shù)有哪些?三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)探討機(jī)器學(xué)習(xí)在交通信號(hào)控制中的智能協(xié)調(diào)中的應(yīng)用,分析其對(duì)交通系統(tǒng)效率的提升。2、(本題5分)論述在強(qiáng)化學(xué)習(xí)中,如何平衡探索與利用以獲得最優(yōu)策略。研究不同的探索策略和其對(duì)學(xué)習(xí)效果的影響。3、(本題5分)詳細(xì)探討在語音合成任務(wù)中,機(jī)器學(xué)習(xí)算法的應(yīng)用和聲音質(zhì)量的評(píng)估方法。研究如何生成自然流暢的語音。4、(本題5分)機(jī)器學(xué)習(xí)中的模型調(diào)優(yōu)技術(shù)有哪些?結(jié)合具體案例,分析如何選擇合適的參數(shù)和算法以提高模型性能。5、(本題5分)論述機(jī)器學(xué)習(xí)在市場營銷中的應(yīng)用及策略。機(jī)器學(xué)習(xí)可以應(yīng)用于市場細(xì)分、客戶流失預(yù)測等任務(wù),為市場
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于畢業(yè)學(xué)生實(shí)習(xí)報(bào)告四篇
- 經(jīng)股肱橈尺動(dòng)脈介入治療對(duì)比-袁晉青
- 北京小學(xué)科學(xué)教師學(xué)年工作總結(jié)大全
- 兒童臨時(shí)監(jiān)護(hù)協(xié)議書(2篇)
- 辦公場地出租合同模板
- 深圳商鋪?zhàn)赓U合同書
- 贈(zèng)送別克商務(wù)轎車協(xié)議書
- 廠房租賃協(xié)議合同書范本
- 揚(yáng)州地下停車位出租協(xié)議
- 八年級(jí)道德與法治下冊第二單元理解權(quán)利義務(wù)第四課公民義務(wù)第2框依法履行義務(wù)教案新人教版
- 2024年黑龍江農(nóng)業(yè)工程職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫
- 企業(yè)法律顧問詳細(xì)流程
- 云數(shù)據(jù)中心建設(shè)項(xiàng)目可行性研究報(bào)告
- 《新生兒視網(wǎng)膜動(dòng)靜脈管徑比的形態(tài)學(xué)分析及相關(guān)性研究》
- 無重大疾病隱瞞保證書
- 2024年春概率論與數(shù)理統(tǒng)計(jì)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 企業(yè)形象設(shè)計(jì)(CIS)戰(zhàn)略策劃及實(shí)施計(jì)劃書
- 2023-2024學(xué)年廣西桂林市高二(上)期末數(shù)學(xué)試卷(含答案)
- 國家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 6-31-01-09 工程機(jī)械維修工(堆場作業(yè)機(jī)械維修工)人社廳發(fā)202226號(hào)
- DB11∕T 1077-2020 建筑垃圾運(yùn)輸車輛標(biāo)識(shí)、監(jiān)控和密閉技術(shù)要求
- GB/T 19963.2-2024風(fēng)電場接入電力系統(tǒng)技術(shù)規(guī)定第2部分:海上風(fēng)電
評(píng)論
0/150
提交評(píng)論