版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線(xiàn)第1頁(yè),共3頁(yè)玉林師范學(xué)院《人工智能概論》
2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的聚類(lèi)分析中,例如將客戶(hù)按照消費(fèi)行為進(jìn)行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類(lèi)算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類(lèi)算法,基于距離進(jìn)行分組B.層次聚類(lèi)算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類(lèi)算法,基于密度進(jìn)行分組D.隨機(jī)聚類(lèi)算法,隨機(jī)分配數(shù)據(jù)到不同組2、當(dāng)使用人工智能進(jìn)行疾病診斷時(shí),需要綜合分析患者的各種臨床數(shù)據(jù),如癥狀、檢查結(jié)果、病史等。假設(shè)這些數(shù)據(jù)來(lái)源多樣、格式不統(tǒng)一,且存在一定的噪聲和缺失值。在這種情況下,以下哪種方法能夠更有效地處理和利用這些數(shù)據(jù)進(jìn)行準(zhǔn)確的診斷?()A.數(shù)據(jù)清洗和預(yù)處理,去除噪聲和填充缺失值B.直接使用原始數(shù)據(jù)進(jìn)行診斷,不做任何處理C.只選擇部分關(guān)鍵數(shù)據(jù),忽略其他數(shù)據(jù)D.對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析,不使用機(jī)器學(xué)習(xí)算法3、在人工智能的發(fā)展中,模型的評(píng)估指標(biāo)至關(guān)重要。以下關(guān)于人工智能模型評(píng)估指標(biāo)的描述,不準(zhǔn)確的是()A.準(zhǔn)確率、召回率和F1值常用于分類(lèi)任務(wù)的評(píng)估B.均方誤差(MSE)和平均絕對(duì)誤差(MAE)常用于回歸任務(wù)的評(píng)估C.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的類(lèi)型,與具體的應(yīng)用場(chǎng)景無(wú)關(guān)D.可以結(jié)合多個(gè)評(píng)估指標(biāo)來(lái)全面評(píng)估模型的性能4、假設(shè)要開(kāi)發(fā)一個(gè)能夠理解人類(lèi)情感和意圖的人工智能助手,例如根據(jù)用戶(hù)的情緒提供相應(yīng)的服務(wù),以下哪種技術(shù)和數(shù)據(jù)可能是關(guān)鍵的?()A.情感計(jì)算技術(shù)和情感標(biāo)注數(shù)據(jù)B.意圖識(shí)別技術(shù)和用戶(hù)行為數(shù)據(jù)C.自然語(yǔ)言理解技術(shù)和多模態(tài)數(shù)據(jù)D.以上都是5、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無(wú)需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對(duì)原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類(lèi)型和任務(wù),不能跨越不同領(lǐng)域6、假設(shè)要開(kāi)發(fā)一個(gè)能夠在復(fù)雜的商業(yè)環(huán)境中進(jìn)行智能決策支持的人工智能系統(tǒng),例如投資決策或市場(chǎng)策略制定,以下哪種技術(shù)和知識(shí)的融合可能是必要的?()A.數(shù)據(jù)分析和領(lǐng)域?qū)<抑R(shí)B.機(jī)器學(xué)習(xí)算法和經(jīng)濟(jì)學(xué)原理C.深度學(xué)習(xí)模型和管理學(xué)理論D.以上都是7、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)一個(gè)醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過(guò)分析大量的醫(yī)療影像和患者數(shù)據(jù)來(lái)給出診斷建議。以下關(guān)于這種應(yīng)用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因?yàn)槠浠诖髷?shù)據(jù)的分析結(jié)果更準(zhǔn)確B.醫(yī)生仍需對(duì)系統(tǒng)的診斷結(jié)果進(jìn)行最終判斷和綜合考量,因?yàn)榇嬖跀?shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見(jiàn)疾病的診斷,對(duì)于罕見(jiàn)病無(wú)能為力D.醫(yī)療人工智能系統(tǒng)的診斷結(jié)果不受數(shù)據(jù)質(zhì)量和算法選擇的影響8、在人工智能的自動(dòng)駕駛場(chǎng)景中,車(chē)輛需要與周?chē)钠渌?chē)輛和基礎(chǔ)設(shè)施進(jìn)行有效的通信和協(xié)作。假設(shè)要實(shí)現(xiàn)車(chē)輛之間的安全、高效的信息交互,以下哪種通信技術(shù)和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車(chē)聯(lián)網(wǎng)專(zhuān)用短程通信(DSRC)D.Wi-Fi通信9、人工智能中的專(zhuān)家系統(tǒng)是一種基于知識(shí)的系統(tǒng)。假設(shè)有一個(gè)用于故障診斷的專(zhuān)家系統(tǒng),需要將專(zhuān)家的知識(shí)和經(jīng)驗(yàn)轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機(jī)制。以下關(guān)于專(zhuān)家系統(tǒng)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.專(zhuān)家系統(tǒng)的性能取決于知識(shí)的準(zhǔn)確性和完整性B.專(zhuān)家系統(tǒng)能夠處理不確定性和模糊性的知識(shí)C.專(zhuān)家系統(tǒng)的開(kāi)發(fā)需要大量的時(shí)間和專(zhuān)業(yè)知識(shí)D.專(zhuān)家系統(tǒng)一旦開(kāi)發(fā)完成,就不需要進(jìn)行更新和維護(hù)10、在人工智能的推薦系統(tǒng)中,例如為用戶(hù)推薦電影、音樂(lè)或商品,需要考慮用戶(hù)的歷史行為、偏好和當(dāng)前的情境信息。假設(shè)一個(gè)用戶(hù)的興趣偏好經(jīng)常變化,以下哪種方法能夠更好地適應(yīng)這種動(dòng)態(tài)的用戶(hù)偏好?()A.基于協(xié)同過(guò)濾的推薦,依賴(lài)其他用戶(hù)的行為B.基于內(nèi)容的推薦,分析物品的特征C.混合推薦,結(jié)合多種推薦方法D.始終使用固定的推薦策略,不進(jìn)行調(diào)整11、在人工智能的自動(dòng)駕駛領(lǐng)域,感知模塊負(fù)責(zé)對(duì)周?chē)h(huán)境進(jìn)行理解。假設(shè)要實(shí)現(xiàn)對(duì)道路上行人的準(zhǔn)確檢測(cè),以下哪種技術(shù)可能是最關(guān)鍵的?()A.激光雷達(dá)B.毫米波雷達(dá)C.攝像頭D.超聲波傳感器12、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。假設(shè)多個(gè)機(jī)構(gòu)想要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)中,各機(jī)構(gòu)的數(shù)據(jù)需要集中到一個(gè)中心服務(wù)器進(jìn)行統(tǒng)一訓(xùn)練B.聯(lián)邦學(xué)習(xí)能夠在不共享原始數(shù)據(jù)的情況下實(shí)現(xiàn)模型的協(xié)同訓(xùn)練C.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡(jiǎn)單的模型結(jié)構(gòu)D.聯(lián)邦學(xué)習(xí)過(guò)程中不存在數(shù)據(jù)安全和隱私泄露的風(fēng)險(xiǎn)13、假設(shè)要開(kāi)發(fā)一個(gè)能夠在復(fù)雜環(huán)境中自主導(dǎo)航的智能機(jī)器人,例如在倉(cāng)庫(kù)中搬運(yùn)貨物,以下哪個(gè)模塊對(duì)于機(jī)器人的決策和行動(dòng)至關(guān)重要?()A.環(huán)境感知模塊B.路徑規(guī)劃模塊C.運(yùn)動(dòng)控制模塊D.以上都是14、在人工智能的語(yǔ)音識(shí)別任務(wù)中,需要克服許多挑戰(zhàn)。假設(shè)要開(kāi)發(fā)一個(gè)能夠在嘈雜環(huán)境中準(zhǔn)確識(shí)別語(yǔ)音的系統(tǒng),以下關(guān)于解決噪聲問(wèn)題的方法,哪一項(xiàng)是不正確的?()A.使用麥克風(fēng)陣列技術(shù),對(duì)多個(gè)麥克風(fēng)采集的信號(hào)進(jìn)行處理,增強(qiáng)有用信號(hào),抑制噪聲B.采用深度學(xué)習(xí)中的降噪自編碼器,對(duì)輸入的語(yǔ)音信號(hào)進(jìn)行預(yù)處理,去除噪聲C.完全忽略噪聲,只關(guān)注語(yǔ)音的關(guān)鍵特征D.利用語(yǔ)音增強(qiáng)算法,提高語(yǔ)音的信噪比15、在人工智能的語(yǔ)音識(shí)別任務(wù)中,需要將人類(lèi)的語(yǔ)音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語(yǔ)速和背景噪音下的語(yǔ)音,為了提高語(yǔ)音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語(yǔ)音的主要部分D.不進(jìn)行任何預(yù)處理,直接對(duì)原始語(yǔ)音進(jìn)行識(shí)別16、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動(dòng)作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動(dòng)作B.始終選擇最優(yōu)動(dòng)作,不進(jìn)行探索C.隨機(jī)選擇動(dòng)作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用17、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開(kāi)發(fā)一個(gè)系統(tǒng)來(lái)監(jiān)測(cè)農(nóng)田中的病蟲(chóng)害情況,需要能夠準(zhǔn)確識(shí)別病蟲(chóng)害的類(lèi)型和嚴(yán)重程度。以下哪種圖像分析技術(shù)和機(jī)器學(xué)習(xí)算法的組合在這個(gè)任務(wù)中最為有效?()A.圖像分割技術(shù)結(jié)合決策樹(shù)算法B.目標(biāo)檢測(cè)技術(shù)結(jié)合支持向量機(jī)算法C.特征提取技術(shù)結(jié)合樸素貝葉斯算法D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)合隨機(jī)森林算法18、在人工智能的語(yǔ)音識(shí)別任務(wù)中,為了提高在嘈雜環(huán)境下的識(shí)別準(zhǔn)確率,以下哪種技術(shù)或方法可能會(huì)被重點(diǎn)研究和應(yīng)用?()A.聲學(xué)模型的改進(jìn)B.噪聲抑制技術(shù)C.多模態(tài)信息融合D.以上都是19、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機(jī)制的優(yōu)化算法。考慮一個(gè)優(yōu)化問(wèn)題,需要在一個(gè)復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項(xiàng)是不正確的?()A.遺傳算法通過(guò)模擬生物進(jìn)化過(guò)程來(lái)尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對(duì)于大規(guī)模的優(yōu)化問(wèn)題具有較好的性能D.遺傳算法的搜索過(guò)程是隨機(jī)的,沒(méi)有任何規(guī)律可循20、假設(shè)要構(gòu)建一個(gè)能夠自主學(xué)習(xí)并改進(jìn)其性能的人工智能圖像識(shí)別系統(tǒng),用于識(shí)別不同種類(lèi)的動(dòng)物。在訓(xùn)練過(guò)程中,需要處理大量的圖像數(shù)據(jù),以下哪種機(jī)器學(xué)習(xí)算法可能最為適合?()A.決策樹(shù)B.支持向量機(jī)C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯21、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對(duì)抗網(wǎng)絡(luò)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過(guò)程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問(wèn)題22、在人工智能的目標(biāo)檢測(cè)任務(wù)中,假設(shè)要在圖像中準(zhǔn)確檢測(cè)出多個(gè)不同類(lèi)別的物體,以下關(guān)于目標(biāo)檢測(cè)算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標(biāo)檢測(cè)算法在復(fù)雜場(chǎng)景下的性能優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNN,能夠?qū)崿F(xiàn)高精度的檢測(cè)C.目標(biāo)檢測(cè)算法的性能只取決于模型的復(fù)雜度,與訓(xùn)練數(shù)據(jù)無(wú)關(guān)D.所有的目標(biāo)檢測(cè)算法都能夠?qū)崟r(shí)處理視頻中的目標(biāo)檢測(cè)任務(wù)23、在人工智能的研究中,模型的評(píng)估指標(biāo)對(duì)于衡量模型性能非常重要。假設(shè)要評(píng)估一個(gè)圖像分類(lèi)模型的性能。以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是常用的評(píng)估指標(biāo)之一,表示正確分類(lèi)的樣本比例B.召回率衡量了模型能夠正確識(shí)別正例的能力C.F1分?jǐn)?shù)綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中一定表現(xiàn)良好24、圖像識(shí)別是人工智能的一個(gè)重要應(yīng)用領(lǐng)域。假設(shè)一個(gè)安防系統(tǒng)需要通過(guò)攝像頭實(shí)時(shí)識(shí)別出特定的人物或物體。以下關(guān)于圖像識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.深度學(xué)習(xí)算法在圖像識(shí)別中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.圖像識(shí)別系統(tǒng)需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.圖像的光照、角度和背景變化等因素會(huì)對(duì)識(shí)別結(jié)果產(chǎn)生較大影響D.一旦圖像識(shí)別模型訓(xùn)練完成,就無(wú)需再進(jìn)行更新和改進(jìn),可以一直準(zhǔn)確識(shí)別各種新的圖像25、在人工智能的知識(shí)表示方法中,語(yǔ)義網(wǎng)絡(luò)和框架表示是常見(jiàn)的方式。假設(shè)我們要構(gòu)建一個(gè)關(guān)于動(dòng)物分類(lèi)的知識(shí)系統(tǒng),以下關(guān)于這兩種表示方法的說(shuō)法,哪一項(xiàng)是正確的?()A.語(yǔ)義網(wǎng)絡(luò)更適合表示結(jié)構(gòu)化的、層次分明的知識(shí)B.框架表示難以處理知識(shí)的不確定性和模糊性C.語(yǔ)義網(wǎng)絡(luò)難以表達(dá)復(fù)雜的對(duì)象及其關(guān)系D.框架表示在知識(shí)的擴(kuò)展和更新方面較為困難二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)談?wù)勅斯ぶ悄茉谥悄苌a(chǎn)流程優(yōu)化中的應(yīng)用。2、(本題5分)簡(jiǎn)述人工智能在智能成本效率分析中的技術(shù)。3、(本題5分)解釋人工智能在生物科學(xué)中的研究方向。4、(本題5分)說(shuō)明人工智能在社會(huì)應(yīng)急響應(yīng)和恢復(fù)中的策略。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一個(gè)使用人工智能的智能餐飲推薦系統(tǒng),分析其如何根據(jù)用戶(hù)口味和飲食偏好提供建議。2、(本題5分)研究一個(gè)使用人工智能的智能戲曲舞臺(tái)布景設(shè)計(jì)系統(tǒng),分析其如何設(shè)計(jì)富有創(chuàng)意的舞臺(tái)布景。3、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能藝術(shù)活動(dòng)策劃與執(zhí)行評(píng)估系統(tǒng),探討其如何評(píng)估藝術(shù)活動(dòng)的策劃和執(zhí)行效果。4、(本題5分)考察一個(gè)基于人工智能的智能金融風(fēng)險(xiǎn)評(píng)估系統(tǒng),討論其在貸款審批和投資決策中的作用。5、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能藝術(shù)市場(chǎng)趨勢(shì)預(yù)測(cè)系統(tǒng),探討其如何預(yù)測(cè)藝術(shù)作品的市場(chǎng)價(jià)值和需求。四、操作題(本大題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度交通樞紐工程承包合同協(xié)議4篇
- 2025年湖北揚(yáng)帆旅游發(fā)展有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年浙江嘉興捷固五金有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年廣東深圳市龍崗區(qū)融媒集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 2025年浙江溫州浙南糧食有限公司招聘筆試參考題庫(kù)含答案解析
- 二零二五年度棉花運(yùn)輸安全風(fēng)險(xiǎn)評(píng)估與管理合同4篇
- 2025年高速公路養(yǎng)護(hù)工程勞務(wù)分包合同模板4篇
- 2025年度綠色環(huán)保獸藥銷(xiāo)售合作框架協(xié)議3篇
- 2025年度個(gè)人住宅建筑防水工程售后服務(wù)合同4篇
- 運(yùn)城師范高等專(zhuān)科學(xué)?!睹褡逦幕z產(chǎn)保護(hù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 北師大版小學(xué)三年級(jí)上冊(cè)數(shù)學(xué)第五單元《周長(zhǎng)》測(cè)試卷(含答案)
- 國(guó)家安全責(zé)任制落實(shí)情況報(bào)告3篇
- DB45T 1950-2019 對(duì)葉百部生產(chǎn)技術(shù)規(guī)程
- 2024年度順豐快遞冷鏈物流服務(wù)合同3篇
- 六年級(jí)下冊(cè)【默寫(xiě)表】(牛津上海版、深圳版)(漢譯英)
- 合同簽訂培訓(xùn)
- 新修訂《保密法》知識(shí)考試題及答案
- 電工基礎(chǔ)知識(shí)培訓(xùn)課程
- 鐵路基礎(chǔ)知識(shí)題庫(kù)單選題100道及答案解析
- 金融AI:顛覆與重塑-深化理解AI在金融行業(yè)的實(shí)踐與挑戰(zhàn)
- 住宅樓安全性檢測(cè)鑒定方案
評(píng)論
0/150
提交評(píng)論