![2025屆四川省眉山一中辦學(xué)共同體中學(xué)高考數(shù)學(xué)五模試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view9/M03/33/3E/wKhkGWdgY_OAPY8OAAIxJAzDbmg020.jpg)
![2025屆四川省眉山一中辦學(xué)共同體中學(xué)高考數(shù)學(xué)五模試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view9/M03/33/3E/wKhkGWdgY_OAPY8OAAIxJAzDbmg0202.jpg)
![2025屆四川省眉山一中辦學(xué)共同體中學(xué)高考數(shù)學(xué)五模試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view9/M03/33/3E/wKhkGWdgY_OAPY8OAAIxJAzDbmg0203.jpg)
![2025屆四川省眉山一中辦學(xué)共同體中學(xué)高考數(shù)學(xué)五模試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view9/M03/33/3E/wKhkGWdgY_OAPY8OAAIxJAzDbmg0204.jpg)
![2025屆四川省眉山一中辦學(xué)共同體中學(xué)高考數(shù)學(xué)五模試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view9/M03/33/3E/wKhkGWdgY_OAPY8OAAIxJAzDbmg0205.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆四川省眉山一中辦學(xué)共同體中學(xué)高考數(shù)學(xué)五模試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知且,函數(shù),若,則()A.2 B. C. D.2.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.3.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.4.已知數(shù)列的前項(xiàng)和為,且,,,則的通項(xiàng)公式()A. B. C. D.5.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.86.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.若的展開(kāi)式中的系數(shù)為150,則()A.20 B.15 C.10 D.258.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.849.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.10.過(guò)圓外一點(diǎn)引圓的兩條切線,則經(jīng)過(guò)兩切點(diǎn)的直線方程是().A. B. C. D.11.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.12.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問(wèn)題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問(wèn)題的近似解,故又稱(chēng)統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長(zhǎng)為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校初三年級(jí)共有名女生,為了了解初三女生分鐘“仰臥起坐”項(xiàng)目訓(xùn)練情況,統(tǒng)計(jì)了所有女生分鐘“仰臥起坐”測(cè)試數(shù)據(jù)(單位:個(gè)),并繪制了如下頻率分布直方圖,則分鐘至少能做到個(gè)仰臥起坐的初三女生有_____________個(gè).14.已知等差數(shù)列的各項(xiàng)均為正數(shù),,且,若,則________.15.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為_(kāi)_________.16.已知多項(xiàng)式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,.(1)求的最小值;(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.18.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.19.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對(duì)數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.20.(12分)已知是圓:的直徑,動(dòng)圓過(guò),兩點(diǎn),且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恰好與軸相切?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(12分)已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率(1)求橢圓的方程;(2)設(shè)分別為橢圓與軸正半軸和軸正半軸的交點(diǎn),是橢圓上在第一象限的一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn),問(wèn)與面積之差是否為定值?說(shuō)明理由.22.(10分)在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點(diǎn).(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;(2)設(shè)點(diǎn);若、、成等比數(shù)列,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.2、A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.3、B【解析】
易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法、除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.4、C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項(xiàng)公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點(diǎn)睛】本小題考查數(shù)列的通項(xiàng)與前項(xiàng)和的關(guān)系等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力,應(yīng)用意識(shí).5、D【解析】
畫(huà)出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒(méi)有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.6、A【解析】
利用兩條直線互相平行的條件進(jìn)行判定【詳解】當(dāng)時(shí),直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點(diǎn)睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.7、C【解析】
通過(guò)二項(xiàng)式展開(kāi)式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開(kāi)式的通項(xiàng)和系數(shù)問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.8、D【解析】
利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、D【解析】
根據(jù)三視圖判斷出幾何體是由一個(gè)三棱錐和一個(gè)三棱柱構(gòu)成,利用錐體和柱體的體積公式計(jì)算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個(gè)三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點(diǎn)睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.10、A【解析】過(guò)圓外一點(diǎn),引圓的兩條切線,則經(jīng)過(guò)兩切點(diǎn)的直線方程為,故選.11、B【解析】
先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫(xiě)出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.12、A【解析】
計(jì)算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點(diǎn)睛】本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個(gè)仰臥起坐的初三女生人數(shù)為.故答案為:.【點(diǎn)睛】本題主要考查頻率分布直方圖,屬于基礎(chǔ)題.14、【解析】
設(shè)等差數(shù)列的公差為,根據(jù),且,可得,解得,進(jìn)而得出結(jié)論.【詳解】設(shè)公差為,因?yàn)椋?,所以,所以故答案為:【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式、需熟記公式,屬于基礎(chǔ)題.15、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.16、164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點(diǎn)睛】本題主要考查了多項(xiàng)式展開(kāi)中的特定項(xiàng)的求解,可以用賦值法也可以用二項(xiàng)展開(kāi)的通項(xiàng)公式求解,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)2;(2).【解析】
(1)化簡(jiǎn)得,所以,展開(kāi)后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對(duì)值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當(dāng)且僅當(dāng)且即時(shí),.(2)由(1)知,,對(duì)任意,都有,∴,即.①當(dāng)時(shí),有,解得;②當(dāng),時(shí),有,解得;③當(dāng)時(shí),有,解得;綜上,,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用和求解含絕對(duì)值的不等式,考查學(xué)生的分類(lèi)思想和計(jì)算能力,屬于中檔題.18、(1)見(jiàn)解析(2)【解析】
(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題考查線面平行,建系通過(guò)坐標(biāo)求二面角等知識(shí)點(diǎn),屬于一般性題目.19、(1);(2)見(jiàn)解析【解析】
(1)求出,記,問(wèn)題轉(zhuǎn)化為方程有兩個(gè)不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點(diǎn),且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時(shí),,單調(diào)遞減,,時(shí),,單調(diào)遞增,,由題意,方程有兩個(gè)不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,記,則,因?yàn)椋?,所以時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,因?yàn)?,,所?即函數(shù)的極大值不小于1.【點(diǎn)睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.20、(1)或.(2)存在,;【解析】
(1)根據(jù)動(dòng)圓過(guò),兩點(diǎn),可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設(shè),由動(dòng)圓與直線相切可得動(dòng)圓的半徑為;又由,及垂徑定理即可確定的值,進(jìn)而確定圓的方程.(2)方法一:設(shè),可得圓的半徑為,根據(jù),可得方程為并化簡(jiǎn)可得的軌跡方程為.設(shè),,可得的中點(diǎn),進(jìn)而由兩點(diǎn)間距離公式表示出半徑,表示出到軸的距離,代入化簡(jiǎn)即可求得的值,進(jìn)而確定所過(guò)定點(diǎn)的坐標(biāo);方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點(diǎn)的坐標(biāo),根據(jù)到軸的距離可得等量關(guān)系,進(jìn)而確定所過(guò)定點(diǎn)的坐標(biāo).【詳解】(1)因?yàn)檫^(guò)點(diǎn),,所以圓心在的垂直平分線上.由已知的方程為,且,關(guān)于于坐標(biāo)原點(diǎn)對(duì)稱(chēng),所以在直線上,故可設(shè).因?yàn)榕c直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設(shè),由已知得的半徑為,.由于,故可得,化簡(jiǎn)得的軌跡方程為.設(shè),,則得,的中點(diǎn),則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡(jiǎn)得,即,故當(dāng)時(shí),①式恒成立.所以存在定點(diǎn),使得以為直徑的圓與軸相切.法二:設(shè),由已知得的半徑為,.由于,故可得,化簡(jiǎn)得的軌跡方程為.設(shè),因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,點(diǎn)在拋物線上,所以,線段的中點(diǎn)的坐標(biāo)為,則到軸的距離為,而,故以為徑的圓與軸切,所以當(dāng)點(diǎn)與重合時(shí),符合題意,所以存在定點(diǎn),使得以為直徑的圓與軸相切.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程求法,動(dòng)點(diǎn)軌跡方程的求法,拋物線定義及定點(diǎn)問(wèn)題的解法綜合應(yīng)用,屬于難題.21、(1)(2)是定值,詳見(jiàn)解析【解析】
(1)根據(jù)長(zhǎng)軸長(zhǎng)為,離心率,則有求解.(2)設(shè),則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設(shè),則,直線,令得,,則,直線,令,得,則,.【點(diǎn)睛】本題主要考查橢圓的方程及直線與橢圓的位置關(guān)系,還考查了平面幾何知識(shí)和運(yùn)算求解的能力,屬于中檔題.22、(1)曲線的直角坐標(biāo)方程為,直線的普通方程為;(2)【解析】
(1)由極坐標(biāo)與直角坐標(biāo)的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標(biāo)方程和直線的普通方程;(2)把的參數(shù)方程代入拋物線方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 道德與法治七年級(jí)上冊(cè)8.1 《生命可以永恒嗎》聽(tīng)課評(píng)課記錄
- 湘教版數(shù)學(xué)七年級(jí)上冊(cè)《3.2 等式的性質(zhì)》聽(tīng)評(píng)課記錄
- 新北師大版數(shù)學(xué)一年級(jí)下冊(cè)《誰(shuí)的紅果多》聽(tīng)評(píng)課記錄
- 獨(dú)立住宅買(mǎi)賣(mài)協(xié)議書(shū)(2篇)
- 【2022年新課標(biāo)】部編版七年級(jí)上冊(cè)道德與法治7.3 讓家更美好 聽(tīng)課評(píng)課記錄
- 魯教版地理六年級(jí)下冊(cè)8.3《撒哈拉以南非洲》聽(tīng)課評(píng)課記錄1
- 湘教版數(shù)學(xué)七年級(jí)下冊(cè)《2.1.4多項(xiàng)式的乘法(2)》聽(tīng)評(píng)課記錄2
- 湘教版數(shù)學(xué)八年級(jí)下冊(cè)《2.3中心對(duì)稱(chēng)》聽(tīng)評(píng)課記錄
- 商務(wù)星球版地理八年級(jí)下冊(cè)活動(dòng)課《區(qū)際聯(lián)系對(duì)經(jīng)濟(jì)發(fā)展的影響》聽(tīng)課評(píng)課記錄
- 蘇科版數(shù)學(xué)八年級(jí)下冊(cè)11.3《用反比例函數(shù)解決問(wèn)題》聽(tīng)評(píng)課記錄2
- 手術(shù)安全管理之手術(shù)部位標(biāo)識(shí)安全
- 2022年版煤礦安全規(guī)程
- 高質(zhì)量社區(qū)建設(shè)的路徑與探索
- 數(shù)字化時(shí)代的酒店員工培訓(xùn):技能升級(jí)
- 足球守門(mén)員撲救技巧:撲救結(jié)合守護(hù)球門(mén)安全
- 《學(xué)術(shù)規(guī)范和論文寫(xiě)作》課件全套 第1-10章 知:認(rèn)識(shí)研究與論文寫(xiě)作 - 引文規(guī)范
- 帶式輸送機(jī)滾筒出廠檢驗(yàn)規(guī)范
- 起重機(jī)更換卷筒施工方案
- 《信息檢索基礎(chǔ)知識(shí)》課件
- 具有履行合同所必須的設(shè)備和專(zhuān)業(yè)技術(shù)能力的承諾函-設(shè)備和專(zhuān)業(yè)技術(shù)能力承諾
- 01智慧物流信息技術(shù)概述
評(píng)論
0/150
提交評(píng)論