版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
曲靖第一中學2025屆高三下學期聯(lián)合考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是等差數(shù)列的前項和,若,,則()A.5 B.10 C.15 D.202.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④3.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關系為()A. B.C. D.4.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.5.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項和,則()A.36 B.72 C. D.6.下列函數(shù)中,圖象關于軸對稱的為()A. B.,C. D.7.若函數(shù)的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.8.函數(shù)的圖象大致為()A. B.C. D.9.已知集合,則()A. B. C. D.10.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.311.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導線相連(弧的兩端各一個,導線接頭忽略不計),已知扇形的半徑為30厘米,則連接導線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米12.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)的和大于8而小于32,則______.14.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為.15.在三棱錐P-ABC中,,,,三個側面與底面所成的角均為,三棱錐的內切球的表面積為_________.16.如圖所示梯子結構的點數(shù)依次構成數(shù)列,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設,函數(shù),其中為自然對數(shù)的底數(shù).(1)設函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.18.(12分)2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?19.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的單調區(qū)間;(3)判斷函數(shù)的零點個數(shù).20.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設正數(shù)等比數(shù)列的前項和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?21.(12分)隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等.其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內容如下:級數(shù)一級二級三級四級每月應納稅所得額(含稅)不超過3000元的部分超過3000元至12000元的部分超過12000元至25000元的部分超過25000元至35000元的部分稅率3102025(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項附加扣除.請問李某月應繳納的個稅金額為多少?(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領的相關資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據(jù)樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.22.(10分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用等差通項,設出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點睛】本題考查等差數(shù)列的求和問題,屬于基礎題2、B【解析】
由命題的否定,復合命題的真假,充分必要條件,四種命題的關系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關系,復合命題的真假判斷,充分必要條件等概念是解題基礎.3、C【解析】
可設,根據(jù)在上為偶函數(shù)及便可得到:,可設,,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調遞增,再根據(jù)對數(shù)的運算得到、、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調性定義判斷一個函數(shù)單調性的方法和過程:設,通過條件比較與,函數(shù)的單調性的應用,屬于中檔題.4、C【解析】
由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題5、A【解析】
根據(jù)是與的等比中項,可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質可得.故選:A【點睛】本題主要考查的是等比數(shù)列的性質,考查等差數(shù)列的求和公式,考查學生的計算能力,是中檔題.6、D【解析】
圖象關于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關于原點(軸)對稱.7、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數(shù),利用導數(shù)研究函數(shù)單調性,分析即得解【詳解】函數(shù)的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數(shù)研究函數(shù)的零點,考查了學生綜合分析,轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于較難題.8、A【解析】
確定函數(shù)在定義域內的單調性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質,如奇偶性、單調性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.9、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點睛】本題考查集合的交運算,屬于基礎題.10、A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.11、B【解析】
由于實際問題中扇形弧長較小,可將導線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.12、C【解析】
由函數(shù)的增減性及導數(shù)的應用得:設,求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結果.【詳解】解:設,則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數(shù)的增減性及導數(shù)的應用,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎題目.14、.【解析】.15、【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側面三角形的高,利用各個面的面積和乘以內切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內心,內切圓半徑.三個側面與底面所成的角均為,,,的高,,設內切球的半徑為R,∴,內切球表面積.故答案為:.【點睛】本題考查三棱錐內切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內切球的半徑,是一道中檔題.16、【解析】
根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點睛】本題考查了等差數(shù)列的應用,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)①函數(shù)與的圖象在區(qū)間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數(shù)零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據(jù)函數(shù)的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調區(qū)間,確定的范圍即可.【詳解】解:(1)①當時,函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點,故函數(shù)與的圖象在區(qū)間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調遞增,又函數(shù)在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數(shù)的范圍是且.【點睛】本題考查了函數(shù)的單調性,最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,屬于難題.18、(1)(2)①②第一種抽獎方案.【解析】
(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據(jù)相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據(jù)二項分布計算期望即可②根據(jù)①得出結論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設“每位顧客獲得180元返金劵”為事件A,則所以兩位顧客均獲得180元返金劵的概率(2)①若選擇抽獎方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎方案一,該顧客獲得返金劵金額的數(shù)學期望為(元)若選擇抽獎方案二,設三次摸球的過程中,摸到紅球的次數(shù)為,最終獲得返金劵的金額為元,則,故所以選擇抽獎方案二,該顧客獲得返金劵金額的數(shù)學期望為(元).②即,所以該超市應選擇第一種抽獎方案【點睛】本題主要考查了古典概型,相互獨立事件的概率,二項分布,期望,及概率知識在實際問題中的應用,屬于中檔題.19、(1)(2)答案見解析(3)答案見解析【解析】
(1)設曲線在點,處的切線的斜率為,可求得,,利用直線的點斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點個數(shù).【詳解】(1),,設曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,,故當時,,所以在上單調遞增;當時,,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當時,同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時,單調遞增為,無遞減區(qū)間;當時,的遞減區(qū)間為,遞增區(qū)間為,;當時,的遞增區(qū)間為,遞減區(qū)間為,;(3)當時,恒成立,所以無零點;當時,由,得:,只有一個零點.【點睛】本題考查利用導數(shù)研究曲線上某點的切線方程,利用導數(shù)研究函數(shù)的單調性,考查分類討論思想與推理、運算能力,屬于中檔題.20、見解析【解析】
根據(jù)等差數(shù)列性質及、,可求得等差數(shù)列的通項公式,由即可求得的值;根據(jù)等式,變形可得,分別討論?、佗冖壑械囊粋€,結合等比數(shù)列通項公式代入化簡,檢驗是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當時,滿足成立.【點睛】本題考查了等差數(shù)列通項公式的求法,等比數(shù)列通項公式及前n項和公式的應用,遞推公式的簡單應用,補充條件后求參數(shù)的值,屬于中檔題.21、(1)李某月應繳納的個稅金額為元,(2)分布列詳見解析,期望為1150元【解析】
(1)分段計算個人所得稅額;
(2)隨機變量X的所有可能的取值為990,1190,1390,1590,分別求出各值對應的概率,列出分布列,求期望即可.【詳解】解:(1)李某月應納稅所得額(含稅)為:29600?5000?1000?2000=21600元
不超過3000的部分稅額為3000×3%=90元
超過3000元至12000元的部分稅額為9000×10%=900元,
超過12000元至25000元的部分稅額為9600×20%=1920元
所以李某月應繳納的個稅金額為90+900+1920=2910元,
(2)有一個孩子
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度第二章國際貨物買賣合同標的檢驗與認證3篇
- 二零二五年度雕塑項目投標采購合同范本3篇
- 2025年度旅游景區(qū)導游旅游紀念品銷售合作合同4篇
- 二零二五版駕校教練員績效考核及激勵合同3篇
- 2025年度餐廳總經理數(shù)字化運營管理合同3篇
- 二零二五年度深部礦產資源勘查開采權轉讓合同2篇
- 二零二四事業(yè)單位借調人員臨時工作期間勞動合同解除流程3篇
- 2024-2025學年高中政治第一單元文化與生活第一課第一框體味文化訓練含解析新人教版必修3
- 二零二五版能源效率認證EMC合同能源管理合作協(xié)議3篇
- 二零二四年度專業(yè)演出服務合同-舞臺劇制作合作協(xié)議3篇
- 帶狀皰疹護理查房課件整理
- 年月江西省南昌市某綜合樓工程造價指標及
- 奧氏體型不銹鋼-敏化處理
- 作物栽培學課件棉花
- 交通信號控制系統(tǒng)檢驗批質量驗收記錄表
- 弱電施工驗收表模板
- 絕對成交課件
- 探究基坑PC工法組合鋼管樁關鍵施工技術
- 國名、語言、人民、首都英文-及各地區(qū)國家英文名
- API SPEC 5DP-2020鉆桿規(guī)范
- 組合式塔吊基礎施工專項方案(117頁)
評論
0/150
提交評論