2025屆江蘇省蘇州市高三第二次模擬考試數(shù)學試卷含解析_第1頁
2025屆江蘇省蘇州市高三第二次模擬考試數(shù)學試卷含解析_第2頁
2025屆江蘇省蘇州市高三第二次模擬考試數(shù)學試卷含解析_第3頁
2025屆江蘇省蘇州市高三第二次模擬考試數(shù)學試卷含解析_第4頁
2025屆江蘇省蘇州市高三第二次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省蘇州市高三第二次模擬考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.2.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.4.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.5.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.6.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內同學征集書法作品貼在班內墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李7.在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?()A. B. C. D.8.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.9.函數(shù)的大致圖象為()A. B.C. D.10.設遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.11.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.12.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或7二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),則的值為__________.14.已知正項等比數(shù)列中,,則__________.15.已知函數(shù)為上的奇函數(shù),滿足.則不等式的解集為________.16.已知數(shù)列中,為其前項和,,,則_________,_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),函數(shù)().(1)討論的單調性;(2)證明:當時,.(3)證明:當時,.18.(12分)在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點.曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.19.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學期望.21.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.22.(10分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大??;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.2、C【解析】

由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.3、B【解析】

列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結果,要注意在哪一步退出循環(huán),是一道容易題.4、C【解析】

根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.5、B【解析】

直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.6、D【解析】

根據(jù)題意,分別假設一個正確,推理出與假設不矛盾,即可得出結論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應“入班即靜”,而否定小董說法后得出:小王對應“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應“天道酬勤”,否定小李的說法后得出:小李對應“細節(jié)決定成敗”,所以剩下小王對應“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應“天道酬勤”,所以得出“細節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點睛】本題考查推理證明的實際應用.7、D【解析】

設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,,結合等比數(shù)列的性質可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,則,故,,.故選:D.【點睛】本題考查數(shù)列與數(shù)學文化,考查了等比數(shù)列的性質,考查了學生的運算求解能力,屬于基礎題.8、A【解析】

設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.9、A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.10、A【解析】

根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.11、B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.12、C【解析】

根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先利用輔助角公式將轉化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數(shù),則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數(shù)的化簡,三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識的應用能力和計算能力,是基礎題.14、【解析】

利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎題.15、【解析】

構造函數(shù),利用導數(shù)判斷出函數(shù)的單調性,再將所求不等式變形為,利用函數(shù)的單調性即可得解.【詳解】設,則,設,則.當時,,此時函數(shù)單調遞減;當時,,此時函數(shù)單調遞增.所以,函數(shù)在處取得極小值,也是最小值,即,,,,即,所以,函數(shù)在上為增函數(shù),函數(shù)為上的奇函數(shù),則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構造函數(shù),求函數(shù)的導數(shù),利用導數(shù)和函數(shù)單調性之間的關系是解決本題的關鍵.綜合性較強.16、8(寫為也得分)【解析】

由,得,.當時,,所以,所以的奇數(shù)項是以1為首項,以2為公比的等比數(shù)列;其偶數(shù)項是以2為首項,以2為公比的等比數(shù)列.則,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】

(1)求出的定義域,導函數(shù),對參數(shù)、分類討論得到答案.(2)設函數(shù),求導說明函數(shù)的單調性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調遞增;當,時,令,得,令,得,則在上單調遞減,在上單調遞增;當,時,,則在上單調遞減;當,時,令,得,令,得,則在上單調遞增,在上單調遞減;(2)證明:設函數(shù),則.因為,所以,,則,從而在上單調遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數(shù)研究含參函數(shù)的單調性,利用導數(shù)證明不等式,屬于難題.18、(1),;(2)【解析】

(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標方程;(2)設直線的參數(shù)方程為(為參數(shù)),代入得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理可得結果.【詳解】(1)由題意得點的直角坐標為,將點代入得則直線的普通方程為.由得,即.故曲線的直角坐標方程為.(2)設直線的參數(shù)方程為(為參數(shù)),代入得.設對應參數(shù)為,對應參數(shù)為.則,,且..【點睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應的參數(shù)可以把普通方程化為參數(shù)方程,利用關系式,等可以把極坐標方程與直角坐標方程互化,這類問題一般我們可以先把曲線方程化為直角坐標方程,用直角坐標方程解決相應問題.19、(1),最大值公頃;(2)17、25、5、5.【解析】

(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達式求出,?!驹斀狻浚?)由余弦定理得,,所以,,同理可得又,所以,故在區(qū)間上的最大值為,近似值為。(2)由(1)知,,,所以,進而,由知,,,故、、、的值分別是17、25、5、5?!军c睛】本題主要考查利用余弦定理解三角形以及同角三角函數(shù)平方關系的應用,意在考查學生的數(shù)學建模以及數(shù)學運算能力。20、(1)(2)分布列見解析,期望為20【解析】

利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數(shù)學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學期望.【點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數(shù)學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應的概率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論