中國地質(zhì)大學(xué)(武漢)《人工智能與機器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
中國地質(zhì)大學(xué)(武漢)《人工智能與機器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
中國地質(zhì)大學(xué)(武漢)《人工智能與機器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
中國地質(zhì)大學(xué)(武漢)《人工智能與機器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
中國地質(zhì)大學(xué)(武漢)《人工智能與機器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁中國地質(zhì)大學(xué)(武漢)

《人工智能與機器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的計算機視覺任務(wù)中,目標(biāo)跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響2、在人工智能的優(yōu)化算法中,隨機梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個深度學(xué)習(xí)模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用3、在人工智能的機器人控制領(lǐng)域,強化學(xué)習(xí)可以讓機器人通過與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個機器人需要學(xué)會在不同地形上行走,以下哪個因素對于強化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機器人的初始狀態(tài)C.獎勵函數(shù)的設(shè)計D.機器人的硬件性能4、強化學(xué)習(xí)是人工智能的一個重要分支,常用于訓(xùn)練智能體做出最優(yōu)決策。假設(shè)一個智能體在一個復(fù)雜的環(huán)境中學(xué)習(xí),以下關(guān)于強化學(xué)習(xí)的描述,正確的是:()A.智能體通過隨機嘗試不同的動作來學(xué)習(xí),不需要任何獎勵反饋B.獎勵函數(shù)的設(shè)計對智能體的學(xué)習(xí)效果沒有影響,只要有足夠的訓(xùn)練時間就能學(xué)會最優(yōu)策略C.強化學(xué)習(xí)算法能夠保證智能體在有限的時間內(nèi)找到絕對最優(yōu)的決策策略D.智能體在學(xué)習(xí)過程中會不斷調(diào)整策略以最大化累積獎勵5、人工智能中的聯(lián)邦學(xué)習(xí)可以在保護數(shù)據(jù)隱私的前提下進行模型訓(xùn)練。假設(shè)多個機構(gòu)想要合作訓(xùn)練一個模型,但又不想共享原始數(shù)據(jù),以下哪個技術(shù)是聯(lián)邦學(xué)習(xí)的核心?()A.加密通信B.模型參數(shù)的加密共享和聚合C.分布式計算框架D.數(shù)據(jù)脫敏6、在人工智能的模型部署階段,需要考慮許多實際問題。假設(shè)要將一個訓(xùn)練好的人工智能模型部署到移動設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓(xùn)練好的模型原封不動地部署到移動設(shè)備上,不進行任何優(yōu)化D.使用知識蒸餾技術(shù),將復(fù)雜模型的知識遷移到較小的模型中7、圖像識別是人工智能的一個重要應(yīng)用領(lǐng)域。假設(shè)一個安防系統(tǒng)需要通過攝像頭實時識別出特定的人物或物體。以下關(guān)于圖像識別技術(shù)的描述,哪一項是錯誤的?()A.深度學(xué)習(xí)算法在圖像識別中表現(xiàn)出色,能夠自動學(xué)習(xí)圖像的特征B.圖像識別系統(tǒng)需要大量的標(biāo)注數(shù)據(jù)進行訓(xùn)練,以提高識別準(zhǔn)確率C.圖像的光照、角度和背景變化等因素會對識別結(jié)果產(chǎn)生較大影響D.一旦圖像識別模型訓(xùn)練完成,就無需再進行更新和改進,可以一直準(zhǔn)確識別各種新的圖像8、在人工智能的語音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語音,以下關(guān)于模型訓(xùn)練的方法,哪一項是不正確的?()A.使用大量的語音數(shù)據(jù)進行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語音特征C.只訓(xùn)練模型生成單一的語音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語言模型,提高語音合成的質(zhì)量9、在人工智能的模型評估中,除了準(zhǔn)確率和召回率等常見指標(biāo),以下哪種指標(biāo)對于衡量模型的性能也很重要?()A.F1值,綜合考慮準(zhǔn)確率和召回率B.均方誤差,用于回歸問題C.混淆矩陣,詳細(xì)展示分類結(jié)果D.以上都是10、人工智能在醫(yī)療領(lǐng)域有著廣泛的應(yīng)用前景,例如疾病診斷、藥物研發(fā)和醫(yī)療影像分析等。以下關(guān)于人工智能在醫(yī)療領(lǐng)域應(yīng)用的描述,不正確的是()A.人工智能可以通過分析大量的醫(yī)療數(shù)據(jù),輔助醫(yī)生進行疾病的早期診斷和預(yù)測B.在藥物研發(fā)中,人工智能可以加速藥物篩選和優(yōu)化藥物配方的過程C.雖然人工智能在醫(yī)療領(lǐng)域有諸多應(yīng)用,但它不能替代醫(yī)生的專業(yè)判斷和臨床經(jīng)驗D.人工智能在醫(yī)療領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不存在任何風(fēng)險和挑戰(zhàn)11、人工智能在智能交通系統(tǒng)中的應(yīng)用包括交通流量預(yù)測和智能信號燈控制等。假設(shè)要優(yōu)化一個城市的交通信號燈系統(tǒng),以下關(guān)于智能交通中的人工智能應(yīng)用的描述,正確的是:()A.僅依靠歷史交通數(shù)據(jù)就能實現(xiàn)最優(yōu)的信號燈控制策略,無需考慮實時交通狀況B.人工智能算法在交通流量預(yù)測中總是能夠準(zhǔn)確預(yù)測未來的交通狀況,不受突發(fā)情況的影響C.結(jié)合實時交通數(shù)據(jù)、傳感器信息和深度學(xué)習(xí)算法,可以動態(tài)優(yōu)化交通信號燈控制,提高交通效率D.智能交通系統(tǒng)中的人工智能應(yīng)用會導(dǎo)致交通管理的復(fù)雜性增加,不如傳統(tǒng)方法可靠12、人工智能中的多智能體系統(tǒng)是由多個相互作用的智能體組成的。假設(shè)在一個物流配送場景中,多個配送車輛作為智能體需要協(xié)同工作以優(yōu)化配送路線。那么,以下關(guān)于多智能體系統(tǒng)的特點,哪一項是不正確的?()A.智能體之間需要進行有效的通信和協(xié)調(diào)B.單個智能體的決策會影響整個系統(tǒng)的性能C.多智能體系統(tǒng)總是能夠達(dá)到全局最優(yōu)解D.智能體可以具有不同的目標(biāo)和策略13、在人工智能的模型訓(xùn)練中,數(shù)據(jù)預(yù)處理是重要的環(huán)節(jié)。假設(shè)要訓(xùn)練一個用于圖像識別的模型,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項是不正確的?()A.數(shù)據(jù)清洗可以去除噪聲和異常值,提高數(shù)據(jù)質(zhì)量B.數(shù)據(jù)增強可以通過旋轉(zhuǎn)、縮放等操作增加數(shù)據(jù)的多樣性C.數(shù)據(jù)歸一化可以將數(shù)據(jù)的值范圍統(tǒng)一,有助于模型的訓(xùn)練和收斂D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略這一環(huán)節(jié),直接進行模型訓(xùn)練14、在人工智能的發(fā)展過程中,算力的提升起到了重要的推動作用。假設(shè)一個研究團隊需要進行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對人工智能的影響的描述,哪一項是不正確的?()A.強大的算力能夠加速模型的訓(xùn)練過程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進D.算力的成本和可獲取性會影響人工智能技術(shù)的應(yīng)用和推廣15、人工智能在醫(yī)療影像診斷中的應(yīng)用不斷發(fā)展。假設(shè)一個醫(yī)院要引入人工智能輔助診斷系統(tǒng)來檢測癌癥。以下關(guān)于該應(yīng)用的描述,哪一項是錯誤的?()A.能夠提高診斷的準(zhǔn)確性和效率,減少漏診和誤診的情況B.可以與醫(yī)生的經(jīng)驗和判斷相結(jié)合,提供更全面的診斷依據(jù)C.人工智能診斷系統(tǒng)可以完全取代病理醫(yī)生的工作,獨立做出診斷結(jié)論D.需要經(jīng)過嚴(yán)格的臨床試驗和驗證,確保其安全性和有效性16、人工智能中的情感分析旨在判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法可能不太適用?()A.基于詞典的方法B.基于機器學(xué)習(xí)的方法C.基于規(guī)則的方法D.基于人工判斷的方法17、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語言的模式和規(guī)律,但可能存在重復(fù)和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?8、人工智能在自動駕駛領(lǐng)域有著廣闊的應(yīng)用前景。假設(shè)一輛自動駕駛汽車在行駛過程中需要做出決策,以下關(guān)于人工智能在自動駕駛中的描述,哪一項是不正確的?()A.傳感器數(shù)據(jù)的融合和處理是自動駕駛系統(tǒng)做出準(zhǔn)確決策的基礎(chǔ)B.深度學(xué)習(xí)算法可以識別道路標(biāo)志、行人和其他車輛,輔助駕駛決策C.自動駕駛系統(tǒng)能夠在所有復(fù)雜的路況下做出完美無誤的決策,無需人類干預(yù)D.為了確保安全,自動駕駛系統(tǒng)需要具備應(yīng)對突發(fā)情況的能力和冗余機制19、人工智能中的元學(xué)習(xí)技術(shù)旨在讓模型能夠快速適應(yīng)新的任務(wù)和數(shù)據(jù)分布。假設(shè)要開發(fā)一個能夠在不同領(lǐng)域的小樣本學(xué)習(xí)任務(wù)中表現(xiàn)良好的元學(xué)習(xí)模型,以下哪種元學(xué)習(xí)方法在泛化能力和學(xué)習(xí)效率方面具有更大的潛力?()A.基于模型的元學(xué)習(xí)B.基于優(yōu)化的元學(xué)習(xí)C.基于度量的元學(xué)習(xí)D.以上方法結(jié)合使用20、人工智能中的模型評估指標(biāo)對于衡量模型的性能至關(guān)重要。假設(shè)我們訓(xùn)練了一個分類模型,以下哪個評估指標(biāo)在類別不平衡的情況下可能不太適用?()A.準(zhǔn)確率B.召回率C.F1值D.混淆矩陣21、人工智能在教育領(lǐng)域的應(yīng)用逐漸興起。假設(shè)要開發(fā)一個智能輔導(dǎo)系統(tǒng),以下關(guān)于這種系統(tǒng)的描述,正確的是:()A.智能輔導(dǎo)系統(tǒng)能夠根據(jù)每個學(xué)生的學(xué)習(xí)進度和特點,提供個性化的學(xué)習(xí)方案B.智能輔導(dǎo)系統(tǒng)可以完全取代教師的作用,學(xué)生無需與教師進行交流C.智能輔導(dǎo)系統(tǒng)的效果只取決于系統(tǒng)的功能,與學(xué)生的學(xué)習(xí)態(tài)度和習(xí)慣無關(guān)D.智能輔導(dǎo)系統(tǒng)不需要考慮教育倫理和學(xué)生隱私保護問題22、人工智能在金融風(fēng)險管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測市場風(fēng)險,以下關(guān)于模型評估指標(biāo)的選擇,哪一項是最重要的?()A.準(zhǔn)確率,即模型正確預(yù)測的比例B.召回率,即模型正確識別出風(fēng)險的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量模型預(yù)測值與實際值之間的差異23、深度學(xué)習(xí)在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓(xùn)練一個深度神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物。如果訓(xùn)練數(shù)據(jù)中某些動物類別的樣本數(shù)量過少,可能會導(dǎo)致什么問題?()A.模型過擬合B.模型欠擬合C.訓(xùn)練速度加快D.模型的準(zhǔn)確率提高24、情感計算是人工智能的一個新興領(lǐng)域,旨在讓計算機理解和處理人類的情感。假設(shè)要開發(fā)一個能夠識別用戶情感狀態(tài)的系統(tǒng)。以下關(guān)于情感計算的描述,哪一項是不準(zhǔn)確的?()A.可以通過分析語音、面部表情和文本等多模態(tài)信息來判斷情感B.情感計算的應(yīng)用可以包括心理咨詢、客戶服務(wù)等領(lǐng)域C.目前的情感計算技術(shù)已經(jīng)能夠準(zhǔn)確無誤地識別和理解所有復(fù)雜的人類情感D.情感模型的訓(xùn)練需要大量標(biāo)注了情感標(biāo)簽的數(shù)據(jù)25、在人工智能的自然語言生成任務(wù)中,預(yù)訓(xùn)練語言模型如GPT-3取得了顯著進展。假設(shè)要使用預(yù)訓(xùn)練語言模型生成一篇新聞報道,以下哪個步驟是最重要的?()A.選擇合適的預(yù)訓(xùn)練模型B.對模型進行微調(diào)C.設(shè)計輸入的提示信息D.評估生成的文本質(zhì)量二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能在智能客服滿意度提升中的技術(shù)。2、(本題5分)解釋人工智能在智能績效改進方案生成中的方法。3、(本題5分)簡述人工智能在市場調(diào)研和趨勢分析中的作用。4、(本題5分)簡述人工智能在軍事領(lǐng)域的應(yīng)用和風(fēng)險。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)剖析某智能民間藝術(shù)作品價值評估系統(tǒng)中人工智能的評估指標(biāo)和可靠性。2、(本題5分)剖析某智能民間音樂文化產(chǎn)業(yè)發(fā)展策略制定系統(tǒng)中人工智能的策略科學(xué)性和可持續(xù)性。3、(本題5分)研究一個利用人工智能進行傳統(tǒng)建筑風(fēng)格融合創(chuàng)新的案例,分析其創(chuàng)新點和文化適應(yīng)性。4、(本題5分)考察一個基于人工智能的智能水質(zhì)監(jiān)測系統(tǒng),討論其如何實時檢測水質(zhì)指標(biāo)和預(yù)警污染事件。5、(本題5分)分析一個利用人工智能進行智能攝影后期處理建議系統(tǒng),探討其如何根據(jù)照片特點提供后期處理思路。四、操作題(本大題共3個小題,共30分)1、(本題10分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論