重慶理工大學《機器學習與數據挖掘》2021-2022學年第一學期期末試卷_第1頁
重慶理工大學《機器學習與數據挖掘》2021-2022學年第一學期期末試卷_第2頁
重慶理工大學《機器學習與數據挖掘》2021-2022學年第一學期期末試卷_第3頁
重慶理工大學《機器學習與數據挖掘》2021-2022學年第一學期期末試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁重慶理工大學

《機器學習與數據挖掘》2021-2022學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設正在進行一個特征選擇任務,需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標變量之間的相關性?()A.過濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以2、在一個無監(jiān)督學習問題中,需要發(fā)現數據中的潛在結構。如果數據具有層次結構,以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對抗網絡(GAN)C.層次聚類D.以上方法都可以3、在自然語言處理任務中,如文本分類,詞向量表示是基礎。常見的詞向量模型有Word2Vec和GloVe等。假設我們有一個大量的文本數據集,想要得到高質量的詞向量表示,同時考慮到計算效率和效果。以下關于這兩種詞向量模型的比較,哪一項是不準確的?()A.Word2Vec可以通過CBOW和Skip-gram兩種方式訓練,靈活性較高B.GloVe基于全局的詞共現統(tǒng)計信息,能夠捕捉更全局的語義關系C.Word2Vec訓練速度較慢,不適用于大規(guī)模數據集D.GloVe在某些任務上可能比Word2Vec表現更好,但具體效果取決于數據和任務4、在進行數據預處理時,異常值的處理是一個重要環(huán)節(jié)。假設我們有一個包含員工工資數據的數據集。以下關于異常值處理的方法,哪一項是不正確的?()A.可以通過可視化數據分布,直觀地發(fā)現異常值B.基于統(tǒng)計學方法,如三倍標準差原則,可以識別出可能的異常值C.直接刪除所有的異常值,以保證數據的純凈性D.對異常值進行修正或替換,使其更符合數據的整體分布5、強化學習中的智能體通過與環(huán)境的交互來學習最優(yōu)策略。以下關于強化學習的說法中,錯誤的是:強化學習的目標是最大化累計獎勵。智能體根據當前狀態(tài)選擇動作,環(huán)境根據動作反饋新的狀態(tài)和獎勵。那么,下列關于強化學習的說法錯誤的是()A.Q學習是一種基于值函數的強化學習算法B.策略梯度算法是一種基于策略的強化學習算法C.強化學習算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強化學習可以應用于機器人控制、游戲等領域6、在深度學習中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓練B.防止過擬合C.提高模型泛化能力D.以上都是7、在深度學習中,卷積神經網絡(CNN)被廣泛應用于圖像識別等領域。假設我們正在設計一個CNN模型,對于圖像分類任務,以下哪個因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經元數量D.以上因素影響都不大8、在機器學習中,強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設一個機器人要通過強化學習來學習如何在復雜的環(huán)境中行走。以下關于強化學習的描述,哪一項是不正確的?()A.強化學習中的智能體根據環(huán)境的反饋(獎勵或懲罰)來調整自己的行為策略B.Q-learning是一種基于值函數的強化學習算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數,通過計算策略的梯度來更新策略參數D.強化學習不需要對環(huán)境進行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略9、在一個強化學習問題中,智能體需要在環(huán)境中通過不斷嘗試和學習來優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法10、在進行自動特征工程時,以下關于自動特征工程方法的描述,哪一項是不準確的?()A.基于深度學習的自動特征學習可以從原始數據中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率11、在一個異常檢測的任務中,數據分布呈現多峰且存在離群點。以下哪種異常檢測算法可能表現較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現局部密度差異較大的異常點,但對參數敏感B.一類支持向量機(One-ClassSVM),適用于高維數據,但對數據分布的假設較強C.基于聚類的異常檢測,將遠離聚類中心的點視為異常,但聚類效果對結果影響較大D.以上算法結合使用,根據數據特點選擇合適的方法或進行組合12、假設正在進行一個異常檢測任務,數據具有高維度和復雜的分布。以下哪種技術可以用于將高維數據映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術都可以13、在處理不平衡數據集時,以下關于解決數據不平衡問題的方法,哪一項是不正確的?()A.過采樣方法通過增加少數類樣本的數量來平衡數據集B.欠采樣方法通過減少多數類樣本的數量來平衡數據集C.合成少數類過采樣技術(SMOTE)通過合成新的少數類樣本來平衡數據集D.數據不平衡對模型性能沒有影響,不需要采取任何措施來處理14、集成學習是一種提高機器學習性能的方法。以下關于集成學習的說法中,錯誤的是:集成學習通過組合多個弱學習器來構建一個強學習器。常見的集成學習方法有bagging、boosting和stacking等。那么,下列關于集成學習的說法錯誤的是()A.bagging方法通過隨機采樣訓練數據來構建多個不同的學習器B.boosting方法通過逐步調整樣本權重來構建多個不同的學習器C.stacking方法將多個學習器的預測結果作為新的特征輸入到一個元學習器中D.集成學習方法一定比單個學習器的性能更好15、在進行機器學習模型評估時,除了準確性等常見指標外,還可以使用混淆矩陣來更詳細地分析模型的性能。對于一個二分類問題,混淆矩陣包含了真陽性(TP)、真陰性(TN)、假陽性(FP)和假陰性(FN)等信息。以下哪個指標可以通過混淆矩陣計算得到,并且對于不平衡數據集的評估較為有效?()A.準確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)16、考慮一個圖像分類任務,使用深度學習模型進行訓練。在訓練過程中,如果發(fā)現模型在訓練集上的準確率很高,但在驗證集上的準確率較低,可能存在以下哪種問題?()A.模型欠擬合,需要增加模型的復雜度B.數據預處理不當,需要重新處理數據C.模型過擬合,需要采取正則化措施D.訓練數據量不足,需要增加更多的數據17、在一個分類問題中,如果數據集中存在多個類別,且類別之間存在層次結構,以下哪種方法可以考慮這種層次結構?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機18、假設要預測一個時間序列數據中的突然變化點,以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數據差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計的假設檢驗,如t檢驗或方差分析,但對數據分布有要求C.變點檢測算法,如CUSUM或Pettitt檢驗,專門用于檢測變化點,但可能對噪聲敏感D.深度學習中的異常檢測模型,能夠自動學習變化模式,但需要大量數據訓練19、在機器學習中,特征工程是非常重要的一步。假設我們要預測一個城市的空氣質量,有許多相關的原始數據,如氣象數據、交通流量、工廠排放等。以下關于特征工程的描述,哪一項是不準確的?()A.對原始數據進行標準化或歸一化處理,可以使不同特征在數值上具有可比性B.從原始數據中提取新的特征,例如計算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標變量有顯著影響的特征,去除冗余或無關的特征D.特征工程只需要在模型訓練之前進行一次,后續(xù)不需要再進行調整和優(yōu)化20、在機器學習中,交叉驗證是一種常用的評估模型性能和選擇超參數的方法。假設我們正在使用K折交叉驗證來評估一個分類模型。以下關于交叉驗證的描述,哪一項是不準確的?()A.將數據集隨機分成K個大小相等的子集,依次選擇其中一個子集作為測試集,其余子集作為訓練集B.通過計算K次實驗的平均準確率等指標來評估模型的性能C.可以在交叉驗證過程中同時調整多個超參數,找到最優(yōu)的超參數組合D.交叉驗證只適用于小數據集,對于大數據集計算成本過高,不適用21、深度學習是機器學習的一個重要分支,它利用深度神經網絡進行學習。以下關于深度學習的說法中,錯誤的是:深度神經網絡具有多層結構,可以自動學習數據的特征表示。深度學習在圖像識別、語音識別等領域取得了巨大的成功。那么,下列關于深度學習的說法錯誤的是()A.卷積神經網絡是一種專門用于處理圖像數據的深度神經網絡B.循環(huán)神經網絡適用于處理序列數據,如文本、時間序列等C.深度神經網絡的訓練需要大量的計算資源和時間D.深度學習算法可以自動學習到最優(yōu)的特征表示,不需要人工設計特征22、某公司希望通過機器學習來預測產品的需求,以便更有效地進行生產計劃和庫存管理。數據集涵蓋了歷史銷售數據、市場趨勢、季節(jié)因素和經濟指標等多方面信息。在這種復雜的多因素預測任務中,以下哪種模型可能表現出色?()A.線性回歸B.多層感知機(MLP)C.循環(huán)神經網絡(RNN)D.隨機森林23、在一個信用評估模型中,我們需要根據用戶的個人信息、財務狀況等數據來判斷其信用風險。數據集存在類別不平衡的問題,即信用良好的用戶數量遠遠多于信用不良的用戶。為了解決這個問題,以下哪種方法是不合適的?()A.對少數類樣本進行過采樣,增加其數量B.對多數類樣本進行欠采樣,減少其數量C.為不同類別的樣本設置不同的權重,在損失函數中加以考慮D.直接使用原始數據集進行訓練,忽略類別不平衡24、假設正在開發(fā)一個用于圖像識別的深度學習模型,需要選擇合適的超參數。以下哪種方法可以用于自動搜索和優(yōu)化超參數?()A.隨機搜索B.網格搜索C.基于模型的超參數優(yōu)化D.以上方法都可以25、在一個異常檢測問題中,例如檢測網絡中的異常流量,數據通常呈現出正常樣本遠遠多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學習算法,可能會因為數據不平衡而導致模型對異常樣本的檢測能力不足。以下哪種方法更適合解決這類異常檢測問題?()A.構建一個二分類模型,將數據分為正常和異常兩類B.使用無監(jiān)督學習算法,如基于密度的聚類算法,識別異常點C.對數據進行平衡處理,如復制異常樣本,使正常和異常樣本數量相等D.以上方法都不適合,異常檢測問題無法通過機器學習解決二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述聚類算法中K-Means的基本流程。2、(本題5分)解釋機器學習在海洋生物學中的生態(tài)監(jiān)測。3、(本題5分)談談如何使用機器學習進行太陽活動預測。4、(本題5分)解釋機器學習中模型壓縮和量化的技術。三、應用題(本大題共5個小題,共25分)1、(本題5分)基于RNN對文本的連貫性進行評估。2、(本題5分)通過神經科學數據研究大腦功能和神經疾病。3、(本題5分)使用心理學研究數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論