版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆青海省海東市重點中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了2.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.43.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.4.若函數(shù)在時取得最小值,則()A. B. C. D.5.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.637.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,8.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則9.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.圓心為且和軸相切的圓的方程是()A. B.C. D.11.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.7812.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則實數(shù)m的值是________.14.已知數(shù)列是等比數(shù)列,,則__________.15.已知,,且,則的最小值是______.16.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.18.(12分)已知a>0,證明:1.19.(12分)已知函數(shù)(1)當(dāng)時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.20.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.21.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內(nèi),求的面積.22.(10分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數(shù),直線的斜率之積為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.2、B【解析】
因為圓與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!3、C【解析】
先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.4、D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當(dāng),即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.5、A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關(guān)于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當(dāng)時,得,即,則滿足,則,即,則,設(shè),則,當(dāng),解得,當(dāng),解得,當(dāng)時,函數(shù)取得最小值,當(dāng)時,;當(dāng)時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數(shù)的應(yīng)用,構(gòu)造新函數(shù),求解新函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關(guān)鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.6、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.7、C【解析】
根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學(xué)期望的計算,屬于中檔題.8、D【解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.9、B【解析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運用,屬于基礎(chǔ)題.10、A【解析】
求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.11、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進(jìn)一步得到數(shù)列的通項公式,然后代入轉(zhuǎn)化計算,再根據(jù)等差數(shù)列求和公式計算出結(jié)果.【詳解】解:由題意得,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,所以當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.12、B【解析】
作出圖形,設(shè)平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點為的中點,同理可得出點為的中點,結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運算.14、【解析】
根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎(chǔ)題.15、1【解析】
先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當(dāng)且僅當(dāng),,時等號成立,故答案為:1.【點睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導(dǎo)致該題不易找到思路,屬于中檔題.16、1【解析】
建系,設(shè),表示出點坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數(shù)量積運算,坐標(biāo)運算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2);時,取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關(guān)鍵是掌握等差數(shù)列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.18、證明見解析【解析】
利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.19、(1);(2)【解析】
(1)當(dāng)時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當(dāng)時,由,可得,令,則只需,當(dāng)時,;當(dāng)時,;當(dāng)時,;故當(dāng)時,取得最小值,即的最大值為.(2)依題意,當(dāng)時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與計算能力.20、(1)或;(2).【解析】
(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數(shù)的單調(diào)性可得的最小值,通過恒成立問題,得到關(guān)于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據(jù)函數(shù)的單調(diào)性可知函數(shù)的最小值為,因為恒成立,所以,解得.所以實數(shù)的取值范圍是.【點睛】本題考查分類討論去絕對值,分段函數(shù)求最值,不等式恒成立問題,屬于中檔題.21、(1)(2)【解析】
(1)因為,可得,即可求得答案;(2)分別設(shè)、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進(jìn)而求得切點,坐標(biāo),根據(jù)兩點間距離公式求得,根據(jù)點到直線距離公式求得點到切線的距離,進(jìn)而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點,,過點的拋物線的切線:,由,消掉,可得,,即,解得,,又由,得,,,同理可得,,,,,切線的方程為,點到切線的距離為,,即的面積為.【點睛】本題主要考查了求拋物線方程和拋物線中三角形面積問題,解題關(guān)鍵是掌握拋物線定義和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式22、(1);(2)證明見解析【解析】
(1)運
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物理教學(xué)的課程設(shè)計
- 焊片課程設(shè)計
- 煤氣化過程原料預(yù)處理考核試卷
- 2024年度養(yǎng)殖企業(yè)員工培訓(xùn)與職業(yè)發(fā)展合同3篇
- 電力儀表的數(shù)字化制造考核試卷
- 洗脫苯工序課程設(shè)計
- 有關(guān)道德的課程設(shè)計
- 格柵排污機課程設(shè)計
- 2024年肉羊養(yǎng)殖與電商平臺數(shù)據(jù)共享購銷協(xié)議2篇
- 2024年私人定制無人機攝影合同3篇
- 2024年02月天津市口腔醫(yī)院派遣制人員招考聘用40人筆試歷年(2016-2023年)真題薈萃帶答案解析
- 評判創(chuàng)業(yè)計劃書
- 銀行信訪工作培訓(xùn)課件
- 北京市西城區(qū)2023-2024學(xué)年部編版七年級上學(xué)期期末歷史試卷
- 廣東省博物館
- 徐州市2023-2024學(xué)年九年級上學(xué)期期末道德與法治試卷(含答案解析)
- 農(nóng)業(yè)信息化實現(xiàn)農(nóng)業(yè)現(xiàn)代化的數(shù)字化轉(zhuǎn)型
- 《義務(wù)教育道德與法治課程標(biāo)準(zhǔn)(2022年版)》
- 學(xué)校食堂廚房規(guī)范化操作程序
- 醫(yī)保飛檢工作方案
- 招投標(biāo)基礎(chǔ)知識講解
評論
0/150
提交評論