廣西百色市2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
廣西百色市2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
廣西百色市2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
廣西百色市2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
廣西百色市2025屆高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西百色市2025屆高三3月份模擬考試數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點.若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.2.如圖,已知平面,,、是直線上的兩點,、是平面內(nèi)的兩點,且,,,,.是平面上的一動點,且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.3.已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.4.雙曲線的漸近線方程是()A. B. C. D.5.函數(shù)在內(nèi)有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-26.已知且,函數(shù),若,則()A.2 B. C. D.7.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.8.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.9.己知函數(shù)若函數(shù)的圖象上關(guān)于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.10.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.11.若θ是第二象限角且sinθ=,則=A. B. C. D.12.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列()中,若,,則的值是______.14.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數(shù)列,后三個和尚的身高依次成等比數(shù)列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.15.如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.16.已知雙曲線的左焦點為,、為雙曲線上關(guān)于原點對稱的兩點,的中點為,的中點為,的中點為,若,且直線的斜率為,則__________,雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點分別為,,點,求的值.19.(12分)已知函數(shù)的最小正周期是,且當(dāng)時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).20.(12分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.21.(12分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.22.(10分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.2、B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時,最大,取得最小值此時故選【點睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.3、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運算求解能力.4、C【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運用.5、A【解析】

求出,對分類討論,求出單調(diào)區(qū)間和極值點,結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點;若,,在內(nèi)有且只有一個零點,.故選:A.【點睛】本題考查函數(shù)的零點、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.6、C【解析】

根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.7、A【解析】

根據(jù)復(fù)數(shù)的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復(fù)數(shù)的基本運算,屬于基礎(chǔ)題.8、B【解析】

解:當(dāng)直線過點時,最大,故選B9、B【解析】

考慮當(dāng)時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導(dǎo)數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關(guān)于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當(dāng)時,,故在上為增函數(shù),在上至多一個零點,舍.當(dāng)時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當(dāng)時,且,故在上存在一個零點.又,其中.令,則,當(dāng)時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當(dāng)時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復(fù)雜的函數(shù)的零點,必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.10、D【解析】

根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.11、B【解析】由θ是第二象限角且sinθ=知:,.所以.12、A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計算能力,屬于中檔題.對于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.二、填空題:本題共4小題,每小題5分,共20分。13、-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.14、【解析】

依題意設(shè)前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數(shù)列,則公比,故.15、【解析】

分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應(yīng)的走法種數(shù),然后利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數(shù)原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數(shù)原理和組合計數(shù)原理的應(yīng)用,屬于中等題.16、【解析】

設(shè),,根據(jù)中點坐標(biāo)公式可得坐標(biāo),利用可得到點坐標(biāo)所滿足的方程,結(jié)合直線斜率可求得,進(jìn)而求得;將點坐標(biāo)代入雙曲線方程,結(jié)合焦點坐標(biāo)可求得,進(jìn)而得到離心率.【詳解】左焦點為,雙曲線的半焦距.設(shè),,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結(jié)合可解得:,,離心率.故答案為:;.【點睛】本題考查直線與雙曲線的綜合應(yīng)用問題,涉及到直線截雙曲線所得線段長度的求解、雙曲線離心率的求解問題;關(guān)鍵是能夠通過設(shè)點的方式,結(jié)合直線斜率、垂直關(guān)系、點在雙曲線上來構(gòu)造方程組求得所需變量的值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)取中點,連接,,通過證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標(biāo)系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.18、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.19、(1);(2)見解析.【解析】

(1)根據(jù)函數(shù)的最小正周期可求出的值,由該函數(shù)的最大值可得出的值,再由,結(jié)合的取值范圍可求得的值,由此可得出函數(shù)的解析式;(2)由計算出的取值范圍,據(jù)此列表、描點、連線可得出函數(shù)在區(qū)間上的圖象.【詳解】(1)因為函數(shù)的最小正周期是,所以.又因為當(dāng)時,函數(shù)取得最大值,所以,同時,得,因為,所以,所以;(2)因為,所以,列表如下:描點、連線得圖象:【點睛】本題考查正弦函數(shù)解析式的求解,同時也考查了利用五點作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.20、(1)(2)【解析】

(1)用等比數(shù)列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數(shù)列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.21、(1)見解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE⊥平面BDEF;(2)建立空間直角坐標(biāo)系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當(dāng)中來求解.詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根據(jù)勾股定理得∠ADB=90°∴AD⊥BD.又因為DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因為BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如圖,由已知可得,,則,則三角形BCD為銳角為30°的等腰三角形.則.過點C做,交DB、AB于點G,H,則點G為點F在面ABCD上的投影.連接FG,則,DE⊥平面ABCD,則平面.過G做于點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論