版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省示范中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.2.已知F是雙曲線(k為常數(shù))的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.23.已知過點(diǎn)且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.34.圓錐底面半徑為,高為,是一條母線,點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線的距離的最大值是()A. B. C. D.5.設(shè),命題“存在,使方程有實(shí)根”的否定是()A.任意,使方程無實(shí)根B.任意,使方程有實(shí)根C.存在,使方程無實(shí)根D.存在,使方程有實(shí)根6.的展開式中的系數(shù)為()A.5 B.10 C.20 D.307.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.48.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題9.在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.1110.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.11.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.2912.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若,i為虛數(shù)單位,則正實(shí)數(shù)的值為______.14.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.若函數(shù)的圖像上存在點(diǎn),滿足約束條件,則實(shí)數(shù)的最大值為__________.16.請(qǐng)列舉用0,1,2,3這4個(gè)數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列是等差數(shù)列,其前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:.18.(12分)橢圓的左、右焦點(diǎn)分別為,橢圓上兩動(dòng)點(diǎn)使得四邊形為平行四邊形,且平行四邊形的周長(zhǎng)和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.19.(12分)已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動(dòng)點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).(1)求橢圓C的方程;(2)設(shè)點(diǎn),為橢圓C上的兩個(gè)動(dòng)點(diǎn),當(dāng)為多少時(shí),點(diǎn)O到直線MN的距離為定值.20.(12分)對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱為一個(gè)好集合.以下記為的元素個(gè)數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時(shí)說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.21.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.22.(10分)如圖,四棱錐中,底面,,點(diǎn)在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.2、D【解析】
分析可得,再去絕對(duì)值化簡(jiǎn)成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時(shí),等式不是雙曲線的方程;當(dāng)時(shí),,可化為,可得虛半軸長(zhǎng),所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D【點(diǎn)睛】本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.3、C【解析】
設(shè)切點(diǎn)為,則,由于直線經(jīng)過點(diǎn),可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)處的切線斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線與曲線切于點(diǎn),則,又∵,∴,∴,解得,,∴過點(diǎn)與曲線相切的直線方程為或,故選C.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.5、A【解析】
只需將“存在”改成“任意”,有實(shí)根改成無實(shí)根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實(shí)根”的否定是“任意,使方程無實(shí)根”.故選:A【點(diǎn)睛】本題考查含有一個(gè)量詞的命題的否定,此類問題要注意在兩個(gè)方面作出變化:1.量詞,2.結(jié)論,是一道基礎(chǔ)題.6、C【解析】
由知,展開式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,,因?yàn)檎归_式的通項(xiàng)為,所以展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開式中的特定項(xiàng),解決這類問題要注意通項(xiàng)公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.7、B【解析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,表示復(fù)數(shù)對(duì)應(yīng)的點(diǎn)與點(diǎn)間的距離,又復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在圓的圓心到的距離為1,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.8、D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.9、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長(zhǎng)度以及使不等式成立的的范圍區(qū)間長(zhǎng)度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長(zhǎng)度為6,使得成立的的范圍為,區(qū)間長(zhǎng)度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識(shí)點(diǎn)有長(zhǎng)度型幾何概型概率公式,等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題目.10、D【解析】
,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.11、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.12、B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復(fù)數(shù)模的運(yùn)算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點(diǎn)睛】本題考查復(fù)數(shù)模的運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.15、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當(dāng)與交于點(diǎn)B(2,1),當(dāng)直線過B點(diǎn)時(shí),m取得最大值為1.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準(zhǔn)確無誤地作出可行域;二、畫標(biāo)準(zhǔn)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三、一般情況下,目標(biāo)函數(shù)的最大或最小會(huì)在可行域的端點(diǎn)或邊界上取得.16、231,321,301,1【解析】
分個(gè)位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個(gè)數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個(gè)位數(shù)字是1時(shí),數(shù)字可以是231,321,301;(2)當(dāng)個(gè)位數(shù)字是3時(shí)數(shù)字可以是1.故答案為:231,321,301,1【點(diǎn)睛】本題考查了分類計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)設(shè)數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設(shè)數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式的計(jì)算,放縮法證明數(shù)列不等式,屬于中檔題.18、(1)(2)或【解析】
(1)根據(jù)題意計(jì)算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計(jì)算得到答案.【詳解】(1)由平行四邊形的周長(zhǎng)為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點(diǎn).設(shè),由消得,所以,因?yàn)?,所?因?yàn)辄c(diǎn)在以線段為直徑的圓上,所以,即,所以直線的方程或.【點(diǎn)睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.19、(1);(2)當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【解析】
(1)的面積最大時(shí),是短軸端點(diǎn),由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時(shí),設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達(dá)定理得,注意,一是計(jì)算,二是計(jì)算原點(diǎn)到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因?yàn)樵跈E圓上,當(dāng)是短軸端點(diǎn)時(shí),到軸距離最大,此時(shí)面積最大,所以,由,解得,所以橢圓方程為.(2)在時(shí),設(shè)直線方程為,原點(diǎn)到此直線的距離為,即,由,得,,,所以,,,所以當(dāng)時(shí),,,為常數(shù).若,則,,,,,綜上所述,當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【點(diǎn)睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運(yùn)算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時(shí)常用此法通過韋達(dá)定理聯(lián)系已知式與待求式.20、(1),,,.(2);證明見解析.(3)證明見解析.【解析】
(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時(shí),,不滿足題意;若,此時(shí),滿足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對(duì)于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時(shí),故中存在元素,使得中所有元素均為的整數(shù)倍.【點(diǎn)睛】本題考查集合中的新定義問題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進(jìn)行推理說明,對(duì)于學(xué)生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.21、(1)證明見解析(2)【解析】
(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個(gè)法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.22、(1)證明見解析(2)【解析】
(1)要證明平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版歷史八年級(jí)上冊(cè)期末復(fù)習(xí)練習(xí)題(含答案)
- 第1課 鴉片戰(zhàn)爭(zhēng)(解析版)
- 2025年全自動(dòng)地?zé)岷銐汗┧O(shè)備合作協(xié)議書
- 建筑工程實(shí)習(xí)律師招聘合同
- 文化藝術(shù)項(xiàng)目資助承諾書
- 城市綠化景觀規(guī)劃與施工合同
- 專利保證金協(xié)議書樣本
- 商業(yè)步行街景觀施工合同
- 產(chǎn)教融合二手房交易合同模板
- 五化鎮(zhèn)房地產(chǎn)行業(yè)銷售管理守則
- 2023年冬季山東高中學(xué)業(yè)水平合格考政治試題真題(含答案)
- 中國特色大國外交和推動(dòng)構(gòu)建人類命運(yùn)共同體
- 《風(fēng)電場(chǎng)項(xiàng)目經(jīng)濟(jì)評(píng)價(jià)規(guī)范》(NB-T 31085-2016)
- 壓裂施工 安全操作規(guī)定
- 元素周期表鍵能鍵長(zhǎng)半徑
- 【三人小品搞笑短劇本】小學(xué)生小品劇本三人
- 包裝設(shè)計(jì)化妝品包裝設(shè)計(jì)
- 各類傳染病個(gè)案調(diào)查表集
- 全口義齒PPT課件
- 室內(nèi)裝飾裝修工程施工組織設(shè)計(jì)方案(完整版)
- 工程竣工驗(yàn)收備案申請(qǐng)表1
評(píng)論
0/150
提交評(píng)論