版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆庫爾勒第二師華山中學2025屆高三第一次調(diào)研測試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.2.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或3.設(shè)為銳角,若,則的值為()A. B. C. D.4.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}5.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元6.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.7.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.8.在正項等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.89.拋物線的焦點為,點是上一點,,則()A. B. C. D.10.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關(guān)于直線對稱 D.的圖象關(guān)于點對稱11.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元12.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,x的系數(shù)為________.(用數(shù)值作答)14.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.15.已知i為虛數(shù)單位,復數(shù),則=_______.16.已知拋物線的焦點為,斜率為的直線過且與拋物線交于兩點,為坐標原點,若在第一象限,那么_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸?shù)穆烦虨镾(千米).設(shè)用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.18.(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.19.(12分)已知函數(shù).(1)當時,解不等式;(2)設(shè)不等式的解集為,若,求實數(shù)的取值范圍.20.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當時,試判斷的零點個數(shù).21.(12分)若正數(shù)滿足,求的最小值.22.(10分)如圖,三棱柱中,平面,,,分別為,的中點.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.2、D【解析】
由成等差數(shù)列得,利用等比數(shù)列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關(guān)鍵,對于等比數(shù)列的通項公式也要熟練.3、D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.4、B【解析】
按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.5、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結(jié)余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.6、C【解析】
根據(jù)函數(shù)的對稱性和單調(diào)性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.7、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.8、B【解析】
根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數(shù)列的計算,意在考查學生的計算能力.9、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.10、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關(guān)于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎(chǔ)題.11、D【解析】
設(shè)目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【詳解】設(shè)目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎(chǔ)知識解決實際問題,屬于基礎(chǔ)題.12、C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數(shù)學運算能力,難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、-40【解析】
由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數(shù)【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數(shù)為.故答案為:-40.【點睛】本題考查二項式定理的應用,解題關(guān)鍵是靈活掌握二項式展開式通項的公式,屬于基礎(chǔ)題.14、【解析】
先確定球心的位置,結(jié)合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設(shè),.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.15、【解析】
先把復數(shù)進行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點睛】本題主要考查復數(shù)模的求解,利用復數(shù)的運算把復數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).16、2【解析】
如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因為.所以,過點A、B分別作準線的垂線,垂足分別為M,N,過點B作于點E,設(shè)|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因為,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點睛】本題主要考查直線和拋物線的位置關(guān)系,考查拋物線的定義,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,.(2)當時,此時選擇火車運輸費最??;當時,此時選擇飛機運輸費用最??;當時,此時選擇火車或飛機運輸費用最省.【解析】
(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關(guān)系得出結(jié)論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關(guān)系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數(shù)的模型,考查了分類討論的思想,屬于基礎(chǔ)題.18、(1)(2);時,取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關(guān)鍵是掌握等差數(shù)列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.19、(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉(zhuǎn)化的思想,屬中檔題.20、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.21、【解析】試題分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新款:基于物聯(lián)網(wǎng)的智能農(nóng)業(yè)解決方案合同
- 2024年股東股權(quán)買賣合同:權(quán)益轉(zhuǎn)讓協(xié)議模板
- 2024標磚采購簡單合同
- B2B電子商務(wù)2024年購銷協(xié)議2篇
- 2025年度建筑工程安全生產(chǎn)責任合同實施細則3篇
- 2024年版:石油化工產(chǎn)品采購與銷售合同
- 2024民間融資居間合同(含應急預案)范本2篇
- 2025年度土壤污染防治與修復工程合同3篇
- 2024年牧草種子供應鏈合作合同書
- 自行車動力知識培訓課件
- ISO9001-ISO14001-ISO45001三體系內(nèi)部審核檢查表
- 2024五年級下冊語文組詞表
- 2024 smart社區(qū)運營全案服務(wù)項目
- JT-T-566-2004軌道式集裝箱門式起重機安全規(guī)程
- 危險廢物處置項目實施方案
- 人教版初三化學上冊講義
- (完整版)共邊比例定理及其應用
- 乙酸鈉?;钒踩畔⒖ā⒅苤癕SDS-
- 德宏隴川縣人民法院招聘聘用制書記員筆試真題2023
- 人工氣道脫出應急預案
- 日本預防控制慢性病新型健康管理模式的研究及啟示的開題報告
評論
0/150
提交評論