安徽省淮北市相山區(qū)師范大學(xué)附屬實(shí)驗(yàn)中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第1頁(yè)
安徽省淮北市相山區(qū)師范大學(xué)附屬實(shí)驗(yàn)中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第2頁(yè)
安徽省淮北市相山區(qū)師范大學(xué)附屬實(shí)驗(yàn)中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第3頁(yè)
安徽省淮北市相山區(qū)師范大學(xué)附屬實(shí)驗(yàn)中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第4頁(yè)
安徽省淮北市相山區(qū)師范大學(xué)附屬實(shí)驗(yàn)中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省淮北市相山區(qū)師范大學(xué)附屬實(shí)驗(yàn)中學(xué)2025屆高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.2.一小商販準(zhǔn)備用元錢(qián)在一批發(fā)市場(chǎng)購(gòu)買(mǎi)甲、乙兩種小商品,甲每件進(jìn)價(jià)元,乙每件進(jìn)價(jià)元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購(gòu)買(mǎi)甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件3.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.4.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣25.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.6.若平面向量,滿足,則的最大值為()A. B. C. D.7.已知,則,不可能滿足的關(guān)系是()A. B. C. D.8.已知向量,,則與的夾角為()A. B. C. D.9.已知,則下列關(guān)系正確的是()A. B. C. D.10.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.811.若單位向量,夾角為,,且,則實(shí)數(shù)()A.-1 B.2 C.0或-1 D.2或-112.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.2017二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.14.在中,若,則的范圍為_(kāi)_______.15.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.16.曲線在點(diǎn)處的切線方程為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過(guò)點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.18.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時(shí),求證:.19.(12分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點(diǎn),若線段的中點(diǎn)為,且直線的斜率為.(1)求橢圓的方程;(2)若過(guò)左焦點(diǎn)斜率為的直線與橢圓交于點(diǎn)為橢圓上一點(diǎn),且滿足,問(wèn):是否為定值?若是,求出此定值,若不是,說(shuō)明理由.20.(12分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過(guò)點(diǎn).求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點(diǎn)為橢圓的上頂點(diǎn),原點(diǎn)為的垂心,求線段的長(zhǎng);②若原點(diǎn)為的重心,求原點(diǎn)到直線距離的最小值.21.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點(diǎn),與軸交于點(diǎn),求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).2、D【解析】

由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購(gòu)買(mǎi)甲、乙兩種商品的件數(shù)應(yīng)分別,利潤(rùn)為元,由題意,畫(huà)出可行域如圖所示,顯然當(dāng)經(jīng)過(guò)時(shí),最大.故選:D.【點(diǎn)睛】本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問(wèn)題,解決此類問(wèn)題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫(huà)出可行域,本題是一道基礎(chǔ)題.3、D【解析】

設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點(diǎn)睛】本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.4、D【解析】

化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.5、A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線轉(zhuǎn)化為函數(shù)求最值。6、C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡(jiǎn)為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.7、C【解析】

根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯(cuò)誤;∵,故D正確故C.【點(diǎn)睛】本題主要考查指數(shù)式和對(duì)數(shù)式的互化,對(duì)數(shù)的運(yùn)算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題8、B【解析】

由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.9、A【解析】

首先判斷和1的大小關(guān)系,再由換底公式和對(duì)數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因?yàn)?,,,所以,綜上可得.故選:A【點(diǎn)睛】本題考查了換底公式和對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.10、A【解析】

由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐?,所以,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、D【解析】

利用向量模的運(yùn)算列方程,結(jié)合向量數(shù)量積的運(yùn)算,求得實(shí)數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點(diǎn)睛】本小題主要考查向量模的運(yùn)算,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.12、B【解析】

根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問(wèn)題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

令,所求問(wèn)題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過(guò)時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問(wèn)題,要做好此類題,前提是正確畫(huà)出可行域,本題是一道基礎(chǔ)題.14、【解析】

借助正切的和角公式可求得,即則通過(guò)降冪擴(kuò)角公式和輔助角公式可化簡(jiǎn),由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【詳解】,所以,.因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的化簡(jiǎn),重點(diǎn)考查學(xué)生的計(jì)算能力,難度一般.15、【解析】

計(jì)算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計(jì)算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點(diǎn)睛】本題考查了向量模的范圍,意在考查學(xué)生的計(jì)算能力,利用三角函數(shù)的有界性是解題的關(guān)鍵.16、【解析】

求導(dǎo),得到和,利用點(diǎn)斜式即可求得結(jié)果.【詳解】由于,,所以,由點(diǎn)斜式可得切線方程為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計(jì)算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計(jì)算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過(guò)點(diǎn)M(2,0),計(jì)算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因?yàn)閙為整數(shù),故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點(diǎn),故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以實(shí)數(shù)a的取值范圍是().(3)設(shè)符合條件的實(shí)數(shù)a存在,則直線l的斜率為,l的方程為,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在實(shí)數(shù)使得過(guò)點(diǎn)P(﹣2,4)的直線l垂直平分弦AB.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時(shí)需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域?yàn)?,,①?dāng)時(shí),由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時(shí),由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時(shí),,所以在上單調(diào)遞增;④當(dāng)時(shí),由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時(shí),欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時(shí),,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因?yàn)?,所以,所?即,所以當(dāng)時(shí),成立.【點(diǎn)睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.19、(1).(2)為定值.過(guò)程見(jiàn)解析.【解析】分析:(1)焦距說(shuō)明,用點(diǎn)差法可得=.這樣可解得,得橢圓方程;(2)若,這種特殊情形可直接求得,在時(shí),直線方程為,設(shè),把直線方程代入橢圓方程,后可得,然后由紡長(zhǎng)公式計(jì)算出弦長(zhǎng),同時(shí)直線方程為,代入橢圓方程可得點(diǎn)坐標(biāo),從而計(jì)算出,最后計(jì)算即可.詳解:(1)由題意可知,設(shè),代入橢圓可得:,兩式相減并整理可得,,即.又因?yàn)?,,代入上式可得?又,所以,故橢圓的方程為.(2)由題意可知,,當(dāng)為長(zhǎng)軸時(shí),為短半軸,此時(shí);否則,可設(shè)直線的方程為,聯(lián)立,消可得,,則有:,所以設(shè)直線方程為,聯(lián)立,根據(jù)對(duì)稱性,不妨得,所以.故,綜上所述,為定值.點(diǎn)睛:設(shè)直線與橢圓相交于兩點(diǎn),的中點(diǎn)為,則有,證明方法是點(diǎn)差法:即把點(diǎn)坐標(biāo)代入橢圓方程得,,兩式相減,結(jié)合斜率公式可得.20、;①;②.【解析】

根據(jù)題意列出方程組求解即可;①由原點(diǎn)為的垂心可得,軸,設(shè),則,,根據(jù)求出線段的長(zhǎng);②設(shè)中點(diǎn)為,直線與橢圓交于,兩點(diǎn),為的重心,則,設(shè):,,,則,當(dāng)斜率不存在時(shí),則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設(shè)焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設(shè),則,,,解得:或,,不重合,故,,故;②設(shè)中點(diǎn)為,直線與橢圓交于,兩點(diǎn),為的重心,則,當(dāng)斜率不存在時(shí),則到直線的距離為1;設(shè):,,,則,,則,則:,,代入式子得:,設(shè)到直線的距離為,則時(shí),;綜上,原點(diǎn)到直線距離的最小值為.【點(diǎn)睛】本題考查橢圓的方程的知識(shí)點(diǎn),結(jié)合運(yùn)用向量,韋達(dá)定理和點(diǎn)到直線的距離的知識(shí),屬于難題.21、(1)an=2n【解析】

(1)先設(shè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論