版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省嘉興市重點名校2025屆高三六校第一次聯(lián)考數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在的圖象大致為A. B.C. D.2.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④3.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.4.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關(guān)于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.5.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.6.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.7.在中,,,,若,則實數(shù)()A. B. C. D.8.已知復數(shù)滿足,則的最大值為()A. B. C. D.69.已知函數(shù)的定義域為,且,當時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.810.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.411.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-312.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線交于點,則長度的最大值為____.14.已知向量=(-4,3),=(6,m),且,則m=__________.15.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關(guān)于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.16.在中,點在邊上,且,設(shè),,則________(用,表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復的一種新興的看病方式.因此,實地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實地看病兩種方式進行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計網(wǎng)絡(luò)看病實地看病總計并根據(jù)列聯(lián)表判斷能否有的把握認為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知函數(shù),曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.19.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.20.(12分)已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項和.21.(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.22.(10分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.2、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.3、A【解析】
由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.4、B【解析】
根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯誤選項,得到函數(shù)圖象,即可求解.【詳解】由題意,當時,P與A重合,則與B重合,所以,故排除C,D選項;當時,,由圖象可知選B.故選:B【點睛】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達式是解題的關(guān)鍵,屬于中檔題.5、D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導,判斷其單調(diào)性,進而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.6、B【解析】
作出不等式組對應(yīng)的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.7、D【解析】
將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算,是一道中檔題.8、B【解析】
設(shè),,利用復數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數(shù)模的最大值,其實本題可以利用不等式來解決.9、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.10、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。11、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-212、D【解析】
A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.14、8.【解析】
利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.15、【解析】
設(shè)圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點求參數(shù)范圍.【詳解】設(shè)圓C1上存在點P(x0,y0)滿足題意,點P關(guān)于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關(guān)系,其中涉及點關(guān)于直線對稱點問題,兩個圓有公共點的判定方式.16、【解析】
結(jié)合圖形及向量的線性運算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因為,所以,又因為,所以.故答案為:【點睛】本題主要考查三角形中向量的線性運算,關(guān)鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉(zhuǎn)化.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)實地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】
(1)對實地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨立性檢驗得有的把握認為患者看病滿意度與看病方式有關(guān);(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡(luò)看病中,有的患者滿意度評分低于80分;在實地看病中,有的患者評分高于80分,因此患者對實地看病滿意度更高.(ii)由莖葉圖可知:網(wǎng)絡(luò)看病滿意度評分的中位數(shù)為73分,實地看病評分的中位數(shù)為87分,因此患者對實地看病滿意度更高.(iii)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評分平均分低于80分;實地看病的滿意度的評分平均分高于80分,因此患者對實地看病滿意度更高.(iV)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評分在莖6上的最多,關(guān)于莖7大致呈對稱分布;實地看病的評分分布在莖8,上的最多,關(guān)于莖8大致呈對稱分布,又兩種看病方式打分的分布區(qū)間相同,故可以認為實地看病評分比網(wǎng)絡(luò)看病打分更高,因此實地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一一種或其他合理理由均可得分.(2)參加網(wǎng)絡(luò)看病滿意度調(diào)查的15名患者中共有5名對網(wǎng)絡(luò)看病滿意,10名對網(wǎng)絡(luò)看病不滿意;參加實地看病滿意度調(diào)查的15名患者中共有10名對實地看病滿意,5名對實地看病不滿意.故完成列聯(lián)表如下:滿意不滿意總計網(wǎng)絡(luò)看病51015實地看病10515總計151530于是,所以有的把握認為患者看病滿意度與看病方式有關(guān).(3)網(wǎng)絡(luò)看病的評價的分數(shù)依次為82,85,85,88,92,由小到大分別記為,從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機抽取2人,所有可能情況有:;;;共10種,其中,這2人評分都低于90分的情況有:;;共6種,故由古典概型公式得這2人評分都低于90分的概率.【點睛】本題主要考查莖葉圖的應(yīng)用和獨立性檢驗,考查古典概型的概率的計算,意在考查學生對這些知識的理解掌握水平.18、(Ⅰ),(Ⅱ)見解析【解析】
(1)根據(jù)導數(shù)的運算法則,求出函數(shù)的導數(shù),利用切線方程求出切線的斜率及切點,利用函數(shù)在切點處的導數(shù)值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉(zhuǎn)化為函數(shù),即將不等式右邊式子左移,得,構(gòu)造函數(shù)并判斷其符號,這里應(yīng)注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當時,,所以,即.【點睛】本題考查了利用導數(shù)求切線的斜率,利用函數(shù)的導數(shù)研究函數(shù)的單調(diào)性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結(jié)合構(gòu)造函數(shù)實現(xiàn)正確轉(zhuǎn)換為最大值和最小值問題是關(guān)鍵.19、(1);(2)見解析.【解析】
(1)令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新款:基于物聯(lián)網(wǎng)的智能農(nóng)業(yè)解決方案合同
- 2024年股東股權(quán)買賣合同:權(quán)益轉(zhuǎn)讓協(xié)議模板
- 2024標磚采購簡單合同
- B2B電子商務(wù)2024年購銷協(xié)議2篇
- 2025年度建筑工程安全生產(chǎn)責任合同實施細則3篇
- 2024年版:石油化工產(chǎn)品采購與銷售合同
- 2024民間融資居間合同(含應(yīng)急預案)范本2篇
- 2025年度土壤污染防治與修復工程合同3篇
- 2024年牧草種子供應(yīng)鏈合作合同書
- 自行車動力知識培訓課件
- 2025年廣東省廣州市荔灣區(qū)各街道辦事處招聘90人歷年高頻重點提升(共500題)附帶答案詳解
- 中試部培訓資料
- 北師大版數(shù)學三年級下冊豎式計算題100道
- 計算機網(wǎng)絡(luò)技術(shù)全套教學課件
- 【可行性報告】2024年第三方檢測相關(guān)項目可行性研究報告
- 屋頂分布式光伏發(fā)電項目施工重點難點分析及應(yīng)對措施
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(原卷版)
- 藏醫(yī)學專業(yè)生涯發(fā)展展示
- 信息安全保密三員培訓
- 2023年浙江杭州師范大學附屬醫(yī)院招聘聘用人員考試真題
- 2024新版《藥品管理法》培訓課件
評論
0/150
提交評論