




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖南省郴州市一中高三3月份第一次模擬考試數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.2.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.3.設函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)4.數(shù)列滿足,且,,則()A. B.9 C. D.75.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.806.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.7.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.8.根據(jù)黨中央關于“精準”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟部門派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.9.若,則的值為()A. B. C. D.10.已知函數(shù).設,若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.11.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.12.已知集合,,若,則()A.或 B.或 C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線()的左右焦點分別為,為坐標原點,點為雙曲線右支上一點,若,,則雙曲線的離心率的取值范圍為_____.14.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當取最大值時,該圓的標準方程為______.15.(5分)某膳食營養(yǎng)科研機構為研究牛蛙體內(nèi)的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現(xiàn)從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.16.已知圓C:經(jīng)過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值.18.(12分)設等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設,,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.19.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學期望.21.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設,過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.22.(10分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)題意,知當時,,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應用,考查計算能力.2、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.3、C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關鍵.4、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、D【解析】
根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結果.【詳解】由題可知:當時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.6、C【解析】
設,,,,設直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.7、D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.8、A【解析】
每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.9、C【解析】
根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數(shù)學運算能力10、D【解析】
求解的導函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域為,,當時,,故在單調(diào)遞減;不妨設,而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.11、B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.12、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
法一:根據(jù)直角三角形的性質(zhì)和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關于的式子,再令,則,令對函數(shù)求導研究函數(shù)在上單調(diào)性,可求得離心率的范圍.法二:令,,,,,根據(jù)直角三角形的性質(zhì)和勾股定理得,將離心率表示成關于角的三角函數(shù),根據(jù)三角函數(shù)的恒等變化轉(zhuǎn)化為關于的函數(shù),可求得離心率的范圍.【詳解】法一:,,,,,,設,則,令,所以時,,在上單調(diào)遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點睛】本題考查求雙曲線的離心率的范圍的問題,關鍵在于將已知條件轉(zhuǎn)化為與雙曲線的有關,從而將離心率表示關于某個量的函數(shù),屬于中檔題.14、【解析】
由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設圓的圓心坐標,到直線的距離等于半徑,再由均值不等式可得的最大值時圓心的坐標,進而求出圓的標準方程.【詳解】設圓的半徑為,由題意可得,所以,由題意設圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當且僅當時取等號,可得,所以圓心坐標為:,半徑為,所以圓的標準方程為:.故答案為:.【點睛】本題考查直線與圓的位置關系及均值不等式的應用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意驗正等號成立的條件.15、【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.16、【解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結合余弦定理和構建關于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因為成等差數(shù)列,所以而,.18、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關于7的余數(shù)相同,不妨設為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數(shù),設,則,且,,,,所以,當,時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數(shù),因為,,所以,所以矛盾,即假設不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點睛】本題考查數(shù)列的綜合應用,以及反證法,求最值,屬于難題.19、(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.20、(1)(2)分布列見解析,期望為20【解析】
利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數(shù)學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學期望.【點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數(shù)學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計算機二級VB考試的實戰(zhàn)演練與試題及答案概覽
- 企業(yè)風險防范試題及答案解析
- 行政法學考試真題及答案匯編
- 多元化2025年VB考試試題及答案
- 班級事務分工與協(xié)作計劃
- 【金華】2025年浙江金華市永康市部分事業(yè)單位招聘工作人員99人筆試歷年典型考題及考點剖析附帶答案詳解
- 數(shù)據(jù)安全中的加密技術試題及答案
- 人才繼任計劃的制定與落實
- 提升倉庫服務質(zhì)量的思考計劃
- 秋季實踐教學與實習安排計劃
- 安徽省2024年中考英語模擬試卷(含答案)4
- 2022年山東威海中考滿分作文《竟然如此簡單》
- 水利工程水閘泵站施工組織設計
- 第七屆江西省大學生金相技能大賽知識競賽單選題題庫附有答案
- 創(chuàng)新方法論智慧樹知到期末考試答案章節(jié)答案2024年西安理工大學
- JTS-215-2018碼頭結構施工規(guī)范
- 山東省日照市東港區(qū)2023-2024學年八年級下學期期末數(shù)學試題
- 湖北省武漢市武昌區(qū)2023-2024學年八年級下學期期末數(shù)學試題
- 工程造價咨詢的協(xié)調(diào)配合及服務措施
- 2022-2023學年廣東省深圳市高二(下)期末數(shù)學試卷含答案
- 急診科護士崗位說明書
評論
0/150
提交評論