版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
甘肅肅蘭州市第五十一中學(xué)2025屆高考數(shù)學(xué)三模試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,,,點(diǎn),分別在線段,上,且,,則().A. B. C.4 D.92.若為過橢圓中心的弦,為橢圓的焦點(diǎn),則△面積的最大值為()A.20 B.30 C.50 D.603.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則公比的值為()A. B.或 C. D.4.已知函數(shù),,若對(duì)任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.5.使得的展開式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.6.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.7.《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自內(nèi)切圓的概率是()A. B. C. D.8.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有.則不等式的解集為().A. B.C.或 D.或9.若向量,則()A.30 B.31 C.32 D.3310.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.11.若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.5612.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中常數(shù)項(xiàng)是___________.14.從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡分?jǐn)?shù)表示)15.若函數(shù)()的圖象與直線相切,則______.16.如圖在三棱柱中,,,,點(diǎn)為線段上一動(dòng)點(diǎn),則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中側(cè)面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點(diǎn).為線段上的點(diǎn),且.(1)證明:為線段的中點(diǎn);(2)求二面角的余弦值.18.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.20.(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司年的相關(guān)數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺(tái)數(shù)(萬臺(tái))2345671011該產(chǎn)品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺(tái)數(shù)(臺(tái))2122286580658488部分計(jì)算結(jié)果:,,,,注:年返修率=(1)從該公司年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬臺(tái))的線性回歸方程(精確到0.01).附:線性回歸方程中,,.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在曲線上,求的最小值及此時(shí)點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點(diǎn)睛】此題考查余弦定理和向量的數(shù)量積運(yùn)算,掌握基本概念和公式即可解決,屬于簡單題目.2、D【解析】
先設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,在表示出面積,由圖象遏制,當(dāng)點(diǎn)A在橢圓的頂點(diǎn)時(shí),此時(shí)面積最大,再結(jié)合橢圓的標(biāo)準(zhǔn)方程,即可求解.【詳解】由題意,設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,則的面積為,當(dāng)最大時(shí),的面積最大,由圖象可知,當(dāng)點(diǎn)A在橢圓的上下頂點(diǎn)時(shí),此時(shí)的面積最大,又由,可得橢圓的上下頂點(diǎn)坐標(biāo)為,所以的面積的最大值為.故選:D.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.3、C【解析】
由可得,故可求的值.【詳解】因?yàn)?,所以,故,因?yàn)檎?xiàng)等比數(shù)列,故,所以,故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.4、C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.5、B【解析】二項(xiàng)式展開式的通項(xiàng)公式為,若展開式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.6、A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.7、C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計(jì)算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點(diǎn)睛】本題主要考查了面積比的幾何概型的概率的計(jì)算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.8、D【解析】
先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識(shí)點(diǎn),屬于較難題目.9、C【解析】
先求出,再與相乘即可求出答案.【詳解】因?yàn)?所以.故選:C.【點(diǎn)睛】本題考查了平面向量的坐標(biāo)運(yùn)算,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.10、A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.11、A【解析】
先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.12、B【解析】
設(shè),通過,再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】試題分析:常數(shù)項(xiàng)為.考點(diǎn):二項(xiàng)展開式系數(shù)問題.14、【解析】
依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可。【詳解】“任取兩個(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是?!军c(diǎn)睛】本題主要考查古典概型的概率求法。15、2【解析】
設(shè)切點(diǎn)由已知可得,即可解得所求.【詳解】設(shè),因?yàn)椋?,即,又?所以,即,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.16、【解析】
把繞著進(jìn)行旋轉(zhuǎn),當(dāng)四點(diǎn)共面時(shí),運(yùn)用勾股定理即可求得的最小值.【詳解】將以為軸旋轉(zhuǎn)至與面在一個(gè)平面,展開圖如圖所示,若,,三點(diǎn)共線時(shí)最小為,為直角三角形,故答案為:【點(diǎn)睛】本題考查了空間幾何體的翻折,平面內(nèi)兩點(diǎn)之間線段最短,解直角三角形進(jìn)行求解,考查了空間想象能力和計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)設(shè)為中點(diǎn),連結(jié),先證明,可證得,假設(shè)不為線段的中點(diǎn),可得平面,這與矛盾,即得證;(2)以為原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設(shè)為中點(diǎn),連結(jié).∴,,又平面,平面,∴.又分別為中點(diǎn),,又,∴.假設(shè)不為線段的中點(diǎn),則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點(diǎn).(2)以為原點(diǎn),由條件面面,∴,以分別為軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何與空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結(jié)合即可解決.【詳解】(1),當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減.故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),,,設(shè)的根為,即有可得,,當(dāng)時(shí),,遞減,當(dāng)時(shí),,遞增.,所以,①當(dāng);②當(dāng)時(shí),設(shè),遞增,,所以.綜上,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)恒成立問題,這里要強(qiáng)調(diào)一點(diǎn),處理恒成立問題時(shí),通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理.19、(1)證明見解析;(2)是,理由見解析.【解析】
(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達(dá)定理即可證明,需要分類討論,【詳解】解:(1)當(dāng)時(shí)直線方程為或,直線與橢圓相切.當(dāng)時(shí),由得,由題知,,即,所以.故直線與橢圓相切.(2)設(shè),,當(dāng)時(shí),,,,所以,即.當(dāng)時(shí),由得,則,,.因?yàn)?所以,即.故為定值.【點(diǎn)睛】本題考查橢圓的簡單性質(zhì),考查向量的運(yùn)算,注意直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查化簡整理的運(yùn)算能力,屬于中檔題.20、(1)見解析;(2)【解析】
(1)先判斷得到隨機(jī)變量的所有可能取值,然后根據(jù)古典概型概率公式和組合數(shù)計(jì)算得到相應(yīng)的概率,進(jìn)而得到分布列和期望.(2)由于去掉年的數(shù)據(jù)后不影響的值,可根據(jù)表中數(shù)據(jù)求出;然后再根據(jù)去掉年的數(shù)據(jù)后所剩數(shù)據(jù)求出即可得到回歸直線方程.【詳解】(1)由數(shù)據(jù)可知,,,,,五個(gè)年份考核優(yōu)秀.由題意的所有可能取值為,,,,,,,.故的分布列為:所以.(2)因?yàn)?,所以去掉年的?shù)據(jù)后不影響的值,所以.又去掉年的數(shù)據(jù)之后,所以,從而回歸方程為:.【點(diǎn)睛】求線性回歸方程時(shí)要涉及到大量的計(jì)算,所以在解題時(shí)要注意運(yùn)算的合理性和正確性,對(duì)于題目中給出的中間數(shù)據(jù)要合理利用.本題考查概率和統(tǒng)計(jì)的結(jié)合,這也是高考中常出現(xiàn)的題型,屬于基礎(chǔ)題.21、(1)(2)(3)直線平面,證明見解析【解析】
取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量.(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《社區(qū)足球賽方案》課件
- 《汽車客運(yùn)站調(diào)研》課件
- 2024年黑龍江林業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫完整答案
- 單位管理制度集合大全【人事管理篇】
- 《綜合分析觀點(diǎn)類》課件
- 單位管理制度匯編大全【人員管理】
- 2024的前臺(tái)工作計(jì)劃(35篇)
- 單位管理制度范文大合集【職工管理篇】
- 單位管理制度范例匯編【人員管理篇】十篇
- 《禽流感的預(yù)防措施》課件
- (八省聯(lián)考)河南省2025年高考綜合改革適應(yīng)性演練 生物試卷(含答案)
- 人工智能銷售工作總結(jié)
- 2025年中小學(xué)春節(jié)安全教育主題班會(huì)課件
- 工商注冊租房合同范例
- 2023-2024學(xué)年廣東省深圳市羅湖區(qū)八年級(jí)上學(xué)期期末生物試題
- 【9物(北師)期末】阜陽市臨泉縣2023-2024學(xué)年九年級(jí)上學(xué)期期末考試物理試題
- 2025年醫(yī)院保衛(wèi)科工作總結(jié)及2025年工作計(jì)劃
- 班會(huì)課件高中
- 部編版一年級(jí)上冊語文第一單元-作業(yè)設(shè)計(jì)
- 安全生產(chǎn)泄漏課件
- 醫(yī)院消防安全知識(shí)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論