青島大學(xué)《高級機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
青島大學(xué)《高級機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
青島大學(xué)《高級機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
青島大學(xué)《高級機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
青島大學(xué)《高級機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁青島大學(xué)

《高級機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的應(yīng)用于教育領(lǐng)域,個(gè)性化學(xué)習(xí)是一個(gè)重要的方向。假設(shè)我們要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑推薦,以下關(guān)于個(gè)性化學(xué)習(xí)的說法,哪一項(xiàng)是不正確的?()A.需要根據(jù)學(xué)生的學(xué)習(xí)歷史和特點(diǎn)進(jìn)行定制B.完全依賴人工智能算法,不需要教師的參與C.可以提高學(xué)生的學(xué)習(xí)效率和效果D.要考慮學(xué)生的興趣和能力差異2、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)要在圖像中準(zhǔn)確檢測出多個(gè)不同類別的物體,以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標(biāo)檢測算法在復(fù)雜場景下的性能優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)的目標(biāo)檢測算法,如FasterR-CNN,能夠?qū)崿F(xiàn)高精度的檢測C.目標(biāo)檢測算法的性能只取決于模型的復(fù)雜度,與訓(xùn)練數(shù)據(jù)無關(guān)D.所有的目標(biāo)檢測算法都能夠?qū)崟r(shí)處理視頻中的目標(biāo)檢測任務(wù)3、在人工智能的語音識(shí)別任務(wù)中,需要將人類的語音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語速和背景噪音下的語音,為了提高語音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語音的主要部分D.不進(jìn)行任何預(yù)處理,直接對原始語音進(jìn)行識(shí)別4、人工智能中的強(qiáng)化學(xué)習(xí)在機(jī)器人控制領(lǐng)域有重要應(yīng)用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì),哪一項(xiàng)是最需要仔細(xì)考慮的?()A.只根據(jù)機(jī)器人是否到達(dá)目標(biāo)位置給予獎(jiǎng)勵(lì)B.綜合考慮機(jī)器人的行走速度、穩(wěn)定性和能量消耗等因素給予獎(jiǎng)勵(lì)C.給予固定的獎(jiǎng)勵(lì)值,不考慮機(jī)器人的表現(xiàn)D.隨機(jī)給予獎(jiǎng)勵(lì),增加學(xué)習(xí)的不確定性5、人工智能中的遷移學(xué)習(xí)可以將在一個(gè)任務(wù)上學(xué)習(xí)到的知識(shí)應(yīng)用到其他相關(guān)任務(wù)中。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型,要將其應(yīng)用于醫(yī)學(xué)圖像分析,以下哪個(gè)因素可能會(huì)限制遷移學(xué)習(xí)的效果?()A.數(shù)據(jù)分布的差異B.模型的復(fù)雜度C.計(jì)算資源的限制D.任務(wù)的相似性6、在人工智能的應(yīng)用中,自動(dòng)駕駛是一個(gè)具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動(dòng)駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全、高效的駕駛決策。那么,以下關(guān)于自動(dòng)駕駛中的人工智能技術(shù),哪一項(xiàng)是不準(zhǔn)確的?()A.需要依靠多種傳感器獲取環(huán)境信息,如攝像頭、激光雷達(dá)等B.基于深度學(xué)習(xí)的目標(biāo)檢測算法可以準(zhǔn)確識(shí)別道路上的行人和車輛C.自動(dòng)駕駛系統(tǒng)一旦訓(xùn)練完成,就不需要再進(jìn)行更新和改進(jìn)D.決策算法需要考慮交通規(guī)則、道德倫理等多方面因素7、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評估一個(gè)深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個(gè)指標(biāo)是最重要的?()A.準(zhǔn)確率B.召回率C.F1值D.特異性8、在人工智能的倫理和社會(huì)影響方面,存在許多值得關(guān)注的問題。假設(shè)人工智能系統(tǒng)在招聘過程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說法,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.可以完全避免人為的偏見和不公平B.可能會(huì)因?yàn)閿?shù)據(jù)偏差導(dǎo)致某些群體受到不公平對待C.其決策結(jié)果應(yīng)該無條件被接受和執(zhí)行D.不需要對其進(jìn)行監(jiān)管和評估9、人工智能在金融風(fēng)險(xiǎn)預(yù)測中具有應(yīng)用潛力。假設(shè)要預(yù)測股票市場的波動(dòng),以下哪種數(shù)據(jù)來源可能對預(yù)測結(jié)果的準(zhǔn)確性提升幫助最???()A.公司的財(cái)務(wù)報(bào)表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟(jì)指標(biāo)10、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識(shí),在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能11、深度學(xué)習(xí)模型在圖像識(shí)別、語音識(shí)別等領(lǐng)域取得了巨大的成功,但也面臨著過擬合、計(jì)算資源需求大等挑戰(zhàn)。假設(shè)要訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)來識(shí)別各種動(dòng)物的圖像,然而數(shù)據(jù)量有限,為了避免過擬合同時(shí)提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓(xùn)練輪數(shù)C.使用數(shù)據(jù)增強(qiáng)技術(shù)D.降低學(xué)習(xí)率12、在人工智能的發(fā)展過程中,倫理和社會(huì)問題日益受到關(guān)注。以下關(guān)于人工智能倫理問題的描述,不正確的是()A.人工智能可能導(dǎo)致就業(yè)結(jié)構(gòu)的變化,一些工作可能被自動(dòng)化取代,從而引發(fā)社會(huì)就業(yè)問題B.人工智能在決策過程中可能存在偏見和不公平,例如在信用評估、招聘等領(lǐng)域C.隨著人工智能技術(shù)的發(fā)展,個(gè)人隱私保護(hù)面臨更大的挑戰(zhàn),因?yàn)榇罅康臄?shù)據(jù)被收集和分析D.人工智能倫理問題不重要,技術(shù)的發(fā)展應(yīng)該優(yōu)先于倫理和社會(huì)問題的考慮13、在人工智能的情感分析任務(wù)中,需要判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價(jià)情感,以下關(guān)于情感分析的描述,正確的是:()A.僅僅依靠關(guān)鍵詞匹配就能夠準(zhǔn)確判斷文本的情感傾向B.深度學(xué)習(xí)模型在情感分析中總是比傳統(tǒng)的機(jī)器學(xué)習(xí)方法更準(zhǔn)確C.考慮文本的上下文、語義和語法結(jié)構(gòu)等多方面信息,能夠提高情感分析的準(zhǔn)確性D.情感分析的結(jié)果不受文本的語言風(fēng)格和表達(dá)方式的影響14、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)要構(gòu)建一個(gè)能夠回答用戶各種問題的智能客服系統(tǒng),需要考慮以下幾個(gè)方面。以下關(guān)于提高回答準(zhǔn)確性的方法,哪一項(xiàng)是最重要的?()A.建立一個(gè)龐大的知識(shí)庫,涵蓋各種常見問題和答案B.運(yùn)用自然語言生成技術(shù),生成更加自然流暢的回答C.不斷收集用戶的反饋,對系統(tǒng)進(jìn)行優(yōu)化和改進(jìn)D.使用多種語言模型進(jìn)行融合,提高回答的多樣性15、人工智能在自動(dòng)駕駛領(lǐng)域的應(yīng)用面臨著諸多技術(shù)和法律挑戰(zhàn)。假設(shè)一輛自動(dòng)駕駛汽車在行駛過程中需要做出決策,如避讓行人或其他車輛。以下哪種方法在確保決策的安全性和合法性方面最為關(guān)鍵?()A.基于概率的決策模型B.遵循預(yù)設(shè)的規(guī)則和策略C.模仿人類駕駛員的決策方式D.實(shí)時(shí)收集大量的交通數(shù)據(jù)進(jìn)行分析16、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點(diǎn)進(jìn)行決策。假設(shè)要對大量的文本數(shù)據(jù)進(jìn)行分類,以下關(guān)于算法選擇的描述,哪一項(xiàng)是不正確的?()A.決策樹算法簡單直觀,適用于處理具有明顯特征差異的文本數(shù)據(jù)B.支持向量機(jī)在小樣本數(shù)據(jù)上表現(xiàn)較好,可用于高精度的文本分類C.隨機(jī)森林算法通過集成多個(gè)決策樹,能夠提高分類的穩(wěn)定性和準(zhǔn)確性D.選擇算法時(shí)只考慮算法的準(zhǔn)確性,而無需考慮計(jì)算資源和訓(xùn)練時(shí)間的需求17、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對應(yīng)的期望輸出B.常見的監(jiān)督學(xué)習(xí)算法包括決策樹、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測或分類D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對于文本、圖像等非數(shù)值型數(shù)據(jù)無法處理18、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨(dú)特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論19、在人工智能的發(fā)展中,倫理和社會(huì)問題日益受到關(guān)注。假設(shè)一個(gè)城市正在考慮廣泛部署人工智能監(jiān)控系統(tǒng),以下關(guān)于人工智能倫理的描述,正確的是:()A.只要人工智能系統(tǒng)能夠提高安全性,就無需考慮其可能對個(gè)人隱私造成的侵犯B.在部署人工智能系統(tǒng)時(shí),不需要考慮公平性和透明度,只要結(jié)果有效就行C.應(yīng)該在開發(fā)和使用人工智能技術(shù)時(shí),遵循倫理原則,制定相關(guān)法規(guī)和政策,以確保其有益和無害的應(yīng)用D.人工智能的倫理問題是次要的,技術(shù)發(fā)展才是關(guān)鍵,倫理可以在后期考慮20、在人工智能的藝術(shù)創(chuàng)作評價(jià)中,例如評價(jià)一幅由人工智能生成的繪畫作品,以下哪種標(biāo)準(zhǔn)和方法可能是具有挑戰(zhàn)性的?()A.創(chuàng)新性和獨(dú)特性B.技術(shù)技巧和表現(xiàn)力C.情感傳達(dá)和審美價(jià)值D.以上都是21、當(dāng)利用人工智能進(jìn)行音樂創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價(jià)值的音樂作品,以下哪種方法和技術(shù)可能會(huì)被運(yùn)用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是22、人工智能中的異常檢測是一項(xiàng)重要任務(wù)。假設(shè)要在一個(gè)工業(yè)生產(chǎn)過程中檢測出異常的數(shù)據(jù)點(diǎn),以下關(guān)于異常檢測方法的描述,正確的是:()A.基于統(tǒng)計(jì)的異常檢測方法適用于所有類型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測方法能夠自動(dòng)發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無需人工特征工程D.以上方法在不同的應(yīng)用場景中都有各自的優(yōu)缺點(diǎn),需要根據(jù)實(shí)際情況選擇23、在人工智能的計(jì)算機(jī)視覺任務(wù)中,目標(biāo)跟蹤是一個(gè)具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個(gè)在人群中移動(dòng)的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項(xiàng)是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響24、人工智能中的優(yōu)化算法對于模型的訓(xùn)練和性能提升起著關(guān)鍵作用。以下關(guān)于優(yōu)化算法的敘述,不正確的是()A.常見的優(yōu)化算法包括隨機(jī)梯度下降(SGD)、Adagrad、Adadelta等B.不同的優(yōu)化算法在收斂速度、穩(wěn)定性和對超參數(shù)的敏感性方面有所不同C.優(yōu)化算法的選擇只取決于模型的架構(gòu),與數(shù)據(jù)特點(diǎn)無關(guān)D.可以通過調(diào)整優(yōu)化算法的參數(shù)來提高模型的訓(xùn)練效果25、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)環(huán)境的獎(jiǎng)勵(lì)信號存在延遲和不確定性。以下哪種方法能夠幫助智能體更好地應(yīng)對這種情況?()A.使用深度強(qiáng)化學(xué)習(xí)算法,具有更強(qiáng)的表示能力B.引入先驗(yàn)知識(shí)和啟發(fā)式策略C.增加訓(xùn)練的迭代次數(shù)D.以上都是26、在人工智能的自然語言生成任務(wù)中,如何生成連貫、有邏輯的文本是一個(gè)挑戰(zhàn)。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)撰寫新聞報(bào)道的系統(tǒng),需要考慮文章的結(jié)構(gòu)、語法和語義的一致性。以下哪種方法或技術(shù)在提高文本生成質(zhì)量方面最為關(guān)鍵?()A.預(yù)訓(xùn)練語言模型B.強(qiáng)化學(xué)習(xí)中的獎(jiǎng)勵(lì)機(jī)制C.語法規(guī)則約束D.以上方法結(jié)合使用27、當(dāng)利用人工智能進(jìn)行欺詐檢測,例如在金融交易中識(shí)別異常行為,以下哪種特征和模型可能是關(guān)鍵的因素?()A.用戶行為特征B.交易模式特征C.復(fù)雜的深度學(xué)習(xí)模型D.以上都是28、在人工智能的決策樹算法中,當(dāng)進(jìn)行特征選擇來構(gòu)建決策樹時(shí),以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹?()A.信息增益B.基尼系數(shù)C.隨機(jī)選擇特征D.選擇特征數(shù)量最多的特征29、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)一個(gè)醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過分析大量的醫(yī)療影像和患者數(shù)據(jù)來給出診斷建議。以下關(guān)于這種應(yīng)用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因?yàn)槠浠诖髷?shù)據(jù)的分析結(jié)果更準(zhǔn)確B.醫(yī)生仍需對系統(tǒng)的診斷結(jié)果進(jìn)行最終判斷和綜合考量,因?yàn)榇嬖跀?shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見疾病的診斷,對于罕見病無能為力D.醫(yī)療人工智能系統(tǒng)的診斷結(jié)果不受數(shù)據(jù)質(zhì)量和算法選擇的影響30、圖像識(shí)別是人工智能的常見應(yīng)用之一。假設(shè)要開發(fā)一個(gè)能夠準(zhǔn)確識(shí)別各種動(dòng)物的圖像識(shí)別系統(tǒng),以下關(guān)于圖像識(shí)別技術(shù)的描述,正確的是:()A.僅僅依靠像素級的特征提取就能實(shí)現(xiàn)高精度的圖像識(shí)別,無需考慮對象的形狀和結(jié)構(gòu)B.深度學(xué)習(xí)模型在圖像識(shí)別中總是能夠自動(dòng)學(xué)習(xí)到最有效的特征,無需人工干預(yù)特征設(shè)計(jì)C.對于復(fù)雜的圖像場景,傳統(tǒng)的圖像識(shí)別方法比基于深度學(xué)習(xí)的方法更具優(yōu)勢D.圖像識(shí)別系統(tǒng)的性能不受圖像質(zhì)量、光照條件和拍攝角度等因素的影響二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)借助TensorFlow實(shí)現(xiàn)一個(gè)語音識(shí)別模型,對給定的語音數(shù)據(jù)進(jìn)行識(shí)別并轉(zhuǎn)換為文字。研究不同的聲學(xué)特征和模型結(jié)構(gòu)對識(shí)別準(zhǔn)確率的影響。2、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個(gè)自編碼變分Bayes網(wǎng)絡(luò),用于數(shù)據(jù)的生成和壓縮,分析模型的復(fù)雜度和性能。3、(本題5分)運(yùn)用自然語言處理技術(shù),對大量的文學(xué)作品進(jìn)行風(fēng)格分析,如作者的寫作風(fēng)格、作品的時(shí)代特征等。提取文本的風(fēng)格特征,使用聚類或分類算法進(jìn)行分析,為文學(xué)研究提供新的視角和方法。4、(本題5分)使用OpenCV和深度學(xué)習(xí)模型,實(shí)現(xiàn)對農(nóng)產(chǎn)品的品質(zhì)檢測和分級,如水果的成熟度、蔬菜的新鮮度等。對農(nóng)產(chǎn)品的圖像進(jìn)行分析,提取品質(zhì)特征,訓(xùn)練模型并在實(shí)際檢測中評估分級的準(zhǔn)確性和效率。5、(本題5分)運(yùn)用自然語言處理技術(shù),對大量的新聞文本進(jìn)行主題分類。使用詞向量模型(如Word2Vec或GloVe)將文本轉(zhuǎn)換

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論