版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
Author:WilliamCopeland,wcopeland1981@Advisor:TimProffitt
Accepted:May28,2024
Abstract
Theincreasingsophisticationofmalwareposessignificantchallengesfortraditional
memoryanalysistechniquesindigitalforensics.Thisresearchexploresthepotentialof
leveragingGenerativeArtificialIntelligence(AI)models,specificallyOpenAI’sGPT-4
TurboandAnthropic’sClaude3Opus,toenhancemalwaredetectioninmemory.By
combiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,thisstudyaimstodevelopaninnovativeapproachforaccuratelyidentifyingandclassifyingmaliciousactivitiesinmemorydumps.Theresearch
methodologyinvolvescollectingadiversesetofmemorydumpsamples,preprocessingthedatausingVolatilityplugins,andevaluatingtheperformanceoftheAImodelsusingquantitativemetrics.
ThefindingshighlightthepotentialofGenerativeAImodelsineffectivelyidentifying
malware,whilealsorevealinglimitationsandareasforimprovement.Theimplications
suggestthatGenerativeAImodelscanserveasvaluablecomplementarytoolsalongsidetraditionalmalwaredetectionmethods,andfutureresearchrecommendationsinclude
expandingdatasets,developingdomain-specificmodels,andintegratingGenerativeAI
capabilitiesintoexistingmemoryforensicsworkflows.ThisstudylaysthefoundationforfurtherexplorationandadvancementofGenerativeAImodelsin-memoryanalysisand
malwaredetection.
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
2
1.Introduction
Indigitalforensics,memoryanalysisiscrucialinuncoveringvaluableevidence
andinsightsfromcomputersystems.Memorydumps,snapshotsofacomputer’svolatilememoryataspecifictime,containawealthofinformationaboutrunningprocesses,
networkconnections,andsystemactivities.However,malware’sincreasing
sophisticationandcomplexityposesignificantchallengesfortraditionalmemoryanalysistechniques.Researchhasshownthatmalwarehasreachedalevelofsophistication,
makingdetectionandanalysisextremelydifficultforforensicinvestigatorsandincidentrespondersduetomalwareauthorsemployingvariousobfuscationandevasion
techniques(Kolbitsch,etal.,2009).
Researchersandpractitionershaveturnedtoadvancedtoolsandframeworksto
addressthesechallenges,suchastheVolatilityFramework.TheVolatilityFrameworkisawidelyusedopen-sourcememoryforensicstoolthatprovidesacollectionofpluginsforextractingandanalyzingdatafrommemorysamplesfromdifferentoperationsystems
(TheVolatilityFramework,2024).However,theeffectivenessofmemoryanalysisheavilyreliesontheabilitytoaccuratelyidentifyandclassifymaliciouspatternsandbehaviorsintheextracteddata.
TheGenerativeArtificialIntelligence(AI)fieldhaswitnessedsignificant
advancementsinrecentyears,openingnewdataanalysisandpatternrecognition
possibilities.ModernGenerativeAImodelsincludeOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus.GPT-4Turboisalargemultimodalmodelwithalarger
contextwindowof128,000tokens,whichacceptstextorimagesasinputstoproducea
textoutput.Withbroadergeneralknowledgeandadvancedreasoningcapabilities,the
modelcanmoreaccuratelysolvecomplexproblems(Models,2024).Claude3Opusis
Anthropic’smostpowerfulmultimodalmodel,whichdeliversadvancedperformanceanddemonstratesahuman-likeunderstandingoftext(ModelsOverview,2024).Withan
extendedcontextwindowof200,000tokens,themodelcanprocesslargeamountsofdatatocompletehighlycomplextasks(LongContextWindowTips,2024).Toutilizethese
GenerativeAIcapabilities,apaidsubscriptionisrequiredtointeractwiththemodelviawebinterfaceoraccesstothemodelviaApplicationProgrammingInterface(API).
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
3
Overall,bothmodelsarepromisingcandidatesforapplicationinvariousdomains,includingcybersecurityanddigitalforensics.
ThisresearchexploresthepotentialofleveragingGenerativeAImodelsfor
enhancedmalwaredetectioninmemory.BycombiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,aninnovative
approachwillbedevelopedthatcanaccuratelyidentifyandclassifymaliciousactivitiesinmemorydumps,ultimatelystrengtheningthecapabilitiesofforensicinvestigatorsincombatingsophisticatedcyberthreats.
2.ResearchMethod
2.1.QuantitativeAnalysisMethod
Thisresearchwillutilizetheaccuracyanderrorratesmethodtoevaluatethe
performanceoftheGenerativeAImodels,specificallyOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus,inidentifyingmalwarewithmemorydumps.This
quantitativeanalysismethodprovidesastraightforwardapproachtomeasuringthe
overallproportionofsamplescorrectlyclassifiedbythemodel,whichaidsinidentifyingareasofimprovementforthemodel.Keymetricsarecalculatedbycomparingthe
models’predictionswiththegroundtruthlabels,suchasaccuracyanderrorrates,whichconsistoftheFalsePositiveRate(FPR)andFalseNegativeRate(FNR),toassessthe
effectivenessofmalwaredetection.Accuracy,asseeninFigure1,isthemeasurementoftheoverallcorrectnessofthemodelsinidentifyingmaliciousandbenignmemorydumps.
Accuracy=(TruePositive(TP)+TrueNegative(TN))/(TotalInstances)
Figure1:AccuracyCalculation
FPR,asseeninFigure2,calculatestheproportionofbenignsamplesincorrectlyclassifiedasmalicious.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
4
FPR=FalsePositive(FP)/(FalsePositive(FP)+TrueNegative(TN))
Figure2:FalsePositiveRateCalculation
FNR,asseeninFigure3,calculatestheproportionofmalicioussamplesincorrectlyclassifiedasbenign.
FNR=FalseNegative(FN)/(FalseNegative(FN)+TruePositive(TP))
Figure3:FalseNegativeRateCalculation
Thesemetricsprovideameanstoevaluatethemodels’performanceandhelpidentifytheirstrengthsandweaknessesinthecontextofmemoryforensics.
2.2.DataCollection
Thedatacollectionphaseinvolvedacquiringdiversememorydumpsamplesandcategorizingthemasmalicious,benign,orunknown.Toensurethereliabilityand
representativenessofthedataset,memorydumpsfromvarioussources,suchaspubliclyavailabledatasets,malwarerepositories,andreal-worldincidents,willbecollected.
TheVolatilityFrameworkwillextractvaluableinformationfromasystemduringmemoryacquisition,suchasprocesses,loadmodules,handles,andnetworkconnectionsfromeachmemorydumpsample(TheVolatilityFramework,2024).TheVolatility
plugin’soutputcreatesarichsetofartifactsanddatapointstoserveasinputforthe
GenerativeAImodels.ThreeartifactcategoriesofVolatilitypluginswereutilizedduringthisresearch:processes,networkconnections,andsuspiciousactivity.Figure4outlinesthepluginsforeachcategory.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
5
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
timeliner
dlllist
ldrmodules
handles
Figure4:VolatilityPlugins
Thesepluginswerechosenbasedontheirrelevancetomemoryanalysisandtheirabilitytoprovidevaluableinsightsintopotentialmaliciousactivities.
2.3.DataProcessing
Severalpreprocessingstepsmustbeperformedtopreparethecollecteddatafromthememorydump.First,theoutputfromtheVolatilitypluginsmustbecleaned,
aggregated,andconvertedintoastructuredformat,specificallyJavaScriptObjectNotation(JSON).Thisstandardizedformatwillfacilitatethedataingestionintothemodelsandensureconsistencyacrossdifferentmemorydumpsamples.
Next,alabelisappendedtothepreprocesseddatawiththesamplename,
operatingsystem,andthegroundtruthinformationforeachmemorydump.Thegroundtruthlabelswillclassifyeachsampleasmaliciousorbenign,providingareliable
referenceforevaluatingtheperformanceofthemodels.Figure5isthegroundtruthtableutilizedforthesamples.
Malicious
Benign
Sample-1
True
False
Sample-2
True
False
Sample-3
False
True
Sample-4
True
False
Sample-5
True
False
Sample-6
False
True
Figure5:GroundTruthTable
Furthermore,developinganappropriatesystempromptiscrucialforeffectivelyutilizingthemodels.Thepromptisdesignedtoelicitrelevantinformationfromthe
modelsbasedonthepreprocesseddata,enablingthemodeltomakeapredictionand
providemeaningfulinsights.Figure6isthesystempromptutilizedduringtheresearch.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
6
Youareanincidentresponderanalyzingamemorydumpfromapotentially
compromisedWindowssystemusingtheVolatilityframework.YouwillbeprovidedwiththeconsolidatedoutputoftheVolatilitypluginsrunagainstthememorydump.
YourtaskistocarefullyanalyzetheprovidedVolatilitypluginoutputtolookforevidencethatisofmalwareonthesystem.
Usethestep-by-stepinstructionsbelowtobuildaresponsetotheuser’sinput.
Step1-Theuserwillprovideyouwithdata.Providethefollowinginformation:<name>Providethesamplefilename.
<operatingsystem>Providetheoperatingsystemidentifiedinthefile.<key>Providethekeytothelabelkeypairinthedata.
<answer>InformtheuserifthedumpisMalicious,Benign,orUnknown.Onlyprovideoneanswer.
SampleName:<name>
OperatingSystem:<operatingsystem>
TruthLabel:<key>Prediction:<answer>
Step2-WriteoutyouranalysisandreasoningbasedontheVolatilityoutput.CitespecificlinesfromtheVolatilityoutputtojustifyyourreasoningwhereapplicable.
Figure6:SystemPrompt
2.4.ModelEvaluation
Evaluatingthemodelsrequiresasystempromptandingestingthepreprocesseddataintothemodelstoassesstheirperformanceusingquantitativemetrics.The
OpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelswereemployedforthispurpose,leveragingtheiradvanceddataanalysiscapabilitiestoanalyzethememory
dumpdata.
ThepreprocesseddatawasingestedintoOpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelsusingtheirrespectivedeveloperplatforms,OpenAI’sPlayground(Playground,2024)andAnthropic’sWorkbench(Workbench,2024).Theseweb-basedinterfacesprovideauser-friendlyenvironmentfordeveloperstosubmitdataandinteractwiththemodelsthroughtheirAPIs.Theplatformsallowforconfiguringmodel
parameters,suchastemperatureandtokenlimit,andprovideameanstoinputthesystempromptanddata.Uponsubmission,themodelsprocesstheinputandgeneratearesponsecontainingtheiranalysisandclassificationofthememorydumpsamples.Themodel’s
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
7
classificationsarethencomparedagainstthegroundtruthlabelsassociatedwitheachmemorydumpsampletoevaluatethemodels’performanceandcalculatetheaccuracy,FPR,andFNRmetrics.Bycomparingtheevaluationmetricsbetweenthemodels,the
researchwillshowinsightsthatcanbegleanedintotherelativestrengthsandweaknesses.
Insummary,theresearchmethodoutlinedinthissectionprovidesanapproachtoevaluatingtheeffectivenessofeachmodel.ItaimstocontributetotheadvancementofintegratingGenerativeAIintoforensicstechniquestocombatevolvingmalwarethreats.
3.FindingsandDiscussion
3.1.AnalysisofQuantitativeResults
Beforedivingintothequantitativeanalysisofthemodel’sperformance,itis
necessarytounderstandthenatureofthedatasetfedintothemodels.Theinputdatasetconsistedofextractedartifacts(runningprocesses,networkconnections,andsuspiciousmemoryregionswereextracted)frommemorysamples.Thesesamplesencompassedavarietyofmalwarefamilies,suchasransomware,trojans,androotkits,aswellasbenignmemorydumpsfromcleansystems.Includingmaliciousandbenignsampleswas
essentialtoaccuratelyassessthemodels’abilitytodistinguishbetweenthetwoclasses.
Itisimportanttonotethatthedatasetusedinthisanalysiswaslimitedtosix
samplesbutcontainedverycomplexdata.Thedatasetrepresentedvariousscenarios,
encompassingoperatingsystems,systemconfigurations,andmalwarebehaviors.The
complexityofthedatasetposedasignificantchallengeforthemodels,astheyneededtoidentifysubtlepatternsandindicatorsofcompromiseamidstavastamountofmemory
data.Byfeedingthemodelswithsuchacomprehensiveandchallengingdataset,theaimwastoassesstheirabilitytogeneralizeandaccuratelydetectmalwareinmemorydumps.
Thequantitativeanalysisofthemodels’performanceyieldedmeaningfulinsights.Thetruthtableandmodelpredictionsforeachsamplewereusedtocalculatethe
accuracy,FPR,andFNRforboththeGPT-4TurboandClaude3Opusmodels,refertoAppendixA–F.Figure7,AccuracyandErrorRates,consolidatesandprovidesthe
metricsforbothmodels.
wcopeland1981@
Accuracy
1
FalsePositiveRate
0
FalseNegativeRate
0
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
8
OpenAIGPT-4Turbo
AnthropicClaud3Opus
TruePositives(TP)
4
TruePositives(TP)
6
TrueNegatives(TN)
0
TrueNegatives(TN)
0
FalsePositives(FP)
2
FalsePositives(FP)
0
FalseNegatives(FN)
0
FalseNegatives(FN)
0
TotalSamples
6
TotalSamples
6
Accuracy
0.6666667
FalsePositiveRate
1
FalseNegativeRate
0
Figure7:AccuracyandErrorRates
Theaccuracy,FPR,andFNRvaluesrangefrom0to1,providingastandardizedmetricforevaluatingthemodels’performance.Accuracyrepresentstheoverall
correctnessofthemodelsinclassifyingmemorydumpsasmaliciousorbenign.Itis
calculatedbydividingthesumoftruepositives(correctlyidentifiedmalicioussamples)andtruenegatives(correctlyidentifiedbenignsamples)bythetotalnumberofsamples.Anaccuracycloserto1isanindicationofbetteroverallperformance.
Inthisanalysis,theGPT-4Turbomodelachievedanaccuracyof0.6666667,
whichmeansitcorrectlyclassifiedapproximately66.67%ofthesamples.Ontheotherhand,theClaude3Opusmodelachievedanaccuracyof1,indicatingthatitcorrectlyclassifiedallthesamplesinthedataset.
TheFalsePositiveRate(FPR)representstheproportionofbenignsamples
incorrectlyclassifiedasmalicious.Itiscalculatedbydividingthenumberoffalse
positives(benignsamplesincorrectlyidentifiedasmalicious)bythesumoffalse
positivesandtruenegatives(correctlyidentifiedbenignsamples).AnFPRcloserto0isdesirable,asitindicatesalowerrateoffalsealarms.TheGPT-4Turbomodel
demonstratedanFPRof1,incorrectlyclassifyingallbenignsamplesasmalicious.ThishighFPRsuggeststhattheGPT-4Turbomodeltendstogeneratefalsepositives,
potentiallyleadingtounnecessaryinvestigationeffortsandresourceallocation.In
contrast,theClaude3OpusmodelachievedanFPRof0,indicatingthatitdidnot
misclassifyanybenignsamplesasmalicious,whichisidealforreducingfalsealarms.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
9
TheFalseNegativeRate(FNR)representstheproportionofmalicioussamples
incorrectlyclassifiedasbenign.Itiscalculatedbydividingthenumberoffalsenegatives(malicioussamplesincorrectlyidentifiedasbenign)bythesumoffalsenegativesand
truepositives(correctlyidentifiedmalicioussamples).AnFNRcloserto0ispreferred,asitindicatesalowerrateofmissedmalware.TheGPT-4TurboandClaude3Opus
modelsdemonstratedanFNRof0,indicatingthattheycorrectlyidentifiedallthe
malicioussamplesinthedataset.ThisperfectFNRsuggeststhatbothmodelscandetectmalwarewithoutmissinganymaliciousinstances.
However,itiscrucialtoconsiderthelimitationsofthedatasetusedinthis
analysis.Thedatasetconsistsofalimitednumberofsamples,anditisvitaltoevaluatethemodels’performanceonamoreextensiveanddiversedatasettoassesstheir
generalizationcapability.Additionally,themodel’sabilitytodetectunseenmalwaresamplesinreal-worldscenariosshouldbevalidatedtoensuretheireffectivenessincategorizingsophisticatedandevolvingmalware.
RefertoAppendixA-FtoreviewthecompleteresponsefromGPT-4TurboandClaude3Opusmodelsforthesampledatasubmitted.
3.2.Limitations
Despitethepromisingresults,itisvitaltoacknowledgethelimitationsofthe
currentresearch.Onelimitationisthesizeanddiversityofthedatasetusedfor
evaluation.Whileeffortsweremadetocollectarepresentativesampleofmemorydumps,thedatasetdoesnotencompassallpossiblevariationsandemergingmalwaretechniques.Futureresearchshouldexpandthedatasetandincludeamorecomprehensiverangeof
malwarefamiliesandsystemconfigurations.
Anotherlimitationwastheconstraintposedbythecontextwindowsizeofthe
GPT-4TurboandClaude3Opusmodels.TheClaude3Opusmodelhasasignificantly
largercontextwindow,capableofprocessingupto72,000moretokensthantheGPT-4Turbomodel.ThisdifferenceintokencapacitypresentedchallengeswhensubmittingthedatageneratedbytheVolatilityplugins.Duetotheextensiveamountofdataproduced,
thetokenlimitofthemodelwasexceeded.Aniterativeprocesswasemployedto
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
10
reconfigurethepluginselectiontoensurethatthedatageneratedbytheVolatilitypluginsdidnotexceedthetokenlimitofthemodels.Theobjectivewastofindanoptimal
balancebetweencollectingacomprehensivesetofartifactsandreducingtheoveralldatasize.Theprocessinvolvedexchangingpluginsmultipletimesandevaluatingtheimpactonthetokencount.Aftereachreconfiguration,theresultingdatawassubmittedto
OpenAI’sTokenizer(Tokenizer,2024)andHuggingFacesTokenizertool(TokenizerArena,2024),whichcalculatedthetokensizeofthedata.Thisiterativeprocesswas
repeateduntilthedataforeachmemorydumpsamplewaswithinthe128,000tokens,
ensuringthedatadidnotexceedthecontextwindowforbothmodels.Asaresultofthisoptimization,theinitialsetoftenpluginshadtobenarroweddowntoasubsetofsix
plugins.Figure8presentstherefinedlistofpluginsusedinthefinalanalysis.
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
Figure8:VolatilityPlugins
Thisreductionallowedforthesuccessfulsubmissionofthedatatobothmodelswithoutexceedingtheirtokencapacities.However,italsomeantthatsomepotentiallyvaluableinformationfromtheexcludedpluginscouldnotbeincorporatedintotheanalysis.Thislimitationhighlightsthetrade-offswhenworkingwithAImodelswithdifferentcontextwindowsizes.
Moreover,themodelsusedinthisresearch,GPT-4TurboandClaude3Opus,haveinherentlimitations.Thesemodelsarebasedonnaturallanguageprocessingandmaynotbedesignedexplicitlyformalwaredetectioninmemorydumps.Further,fine-tuningandadaptingthemodelstothespecificdomainofmemoryforensicscould
enhancetheirperformance.
3.3.AreasofImprovement
Severalareasforimprovementcanbeidentifiedbasedonthefindingsand
limitationsdiscussed.First,thepreprocessingtechniquesappliedtothememorydump
datacouldbefurtherrefined.Exploringtechniquestoefficientlycompressorsummarize
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
11
thedatageneratedbytheVolatilitypluginswouldenabletheinclusionofmorecomprehensiveinformationwithinthetokenlimitsofthemodels.
Secondly,thepromptsusedtointeractwiththemodelscanbeoptimized.
Developingmoretargetedandcontext-specificpromptscouldimprovethemodels’
abilitytoidentifymaliciouspatternsaccurately.PromptdevelopmentiscrucialingettingthemostoutofGenerativeAImodels.Researcherscanguidethemodelsbycarefully
designingpromptstoproducemoreaccurateandrelevantresponsesformalwaredetectionandothertasks.
Whenoptimizingprompts,severalkeyfactorsshouldbeconsidered.Thepromptshouldhaveaclearobjective,explicitlystatingwhatthemodelshouldachieve(PromptEngineering,2024).Providingspecificdetailsorparametersrelevanttothetaskcan
furtherguidethemodel’sresponse.Usingconciseandunambiguouslanguagereduces
confusionandimprovesthemodel’sunderstandingofthetask.Includingrelevant
context,framingthepromptasaquestionordirective,andspecifyingtheroleorpersonathemodelshouldadoptcanalsohelprefinetheresponsestyleanddepthaccordingtotheassumedexpertise(PromptEngineering,2024).Breakingcomplextasksintoclear,
manageablestepsandprovidingexamplescanleadtomorestructuredandcoherentresponses(PromptEngineering,2024).
Promptdevelopmentisaniterativeprocessthatrequiresexperimentationand
refinement.Researchersshouldcontinuouslyevaluatethemodel’sresponsesandadjustthepromptsaccordingly.Well-craftedpromptscansignificantlyenhancethemodels’
abilitytoidentifymaliciouspatternsaccuratelyinthecontextofmalwaredetection.Bycarefullydesigningpromptsthatalignwitheachtask’sspecificobjectivesand
requirements,researchersandpractitionerscanharnessthepowerofthesemodelstosolvecomplexproblemsandgeneratevaluableinsights.
Additionally,incorporatingdomain-specificknowledgeandrulesintothemodelscouldenhancetheirperformance.Byintegratingexpertknowledgeandheuristicsfrom
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
12
memoryforensics,themodelscanbeguidedtowardamoreaccurateandcontext-awareprediction.
Furthermore,exploringensembletechniquesthatcombineGenerativeAImodelsorintegratingthemwithtraditionalmalwaredetectionmethodscouldprovideamore
robustapproachtoidentifyingmalwareinmemorydumps.
3.4.ReflectionontheResearchObjective
Theresearchobjectivessetoutatthebeginninghavebeensuccessfullyaddressed.Thequantitativeanalysismethod,utilizingaccuracyanderrorrates,providedameanstoevaluateGenerativeAImodels’performanceindetectingmalwareinmemorydumps.
Thedatacollectionandpreprocessingsteps,leveragingtheVolatilityFrameworkandselectedplugins,enabledtheextractionofartifactsfrommemorydumps.The
preprocesseddatawasinputfortheGenerativeAImodels,facilitatingtheirevaluationandanalysis.
Thefindingsanddiscussionsectionprovidedin-depthinsightsintothemodels’
performance,limitations,andareasforimprovement.Theimplicationsofthefindingsforenhancingmalwaredetectioninmemorywereexplored,highlightingthepotential
benefitsandchallengesassociatedwithintegratingGenerativeAImodelsinmemoryforensics.
4.ImplicationsandRecommendations
4.1.ImplicationsoftheFindings
Thefindingsofthisresearchhavesignificantimplicationsforimprovingmalwaredetectioninmemory.ThegenerativeAImodels’highaccuracyandrelativelylowerrorratesdemonstratetheirpotentialasavaluabletoolformemoryforensicspractitioners.
ByleveragingthepowerofGenerativeAI,investigatorscanautomateand
acceleratetheprocessofanalyzingmemorydumps,enablingthemtoidentifypotential
malwareinfectionsquickly.TheexperimentalresultsinthisstudyshowthattheClaude3Opusmodelachievedaperfectaccuracyscoreof1andanFNRof0,indicatingitsabilitytocorrectlyidentifyallmalicioussampleswithoutmissingany(Figure7).Thislevelof
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
13
accuracycanconsiderablyreducethetimeandenergyrequiredformanualanalysis,
allowingformoreefficientandeffectiveincidentresponse.ResearchhasshownthatAI-basedtechnologiesleveragedindigitalforensicinvestigationscandrasticallysavethe
timeneededtoevaluateanduncoverpotentialsecuritybreaches(Fakiha,2023).
Moreover,theabilityofgenerativeAImodelstolearnandadapttonewmalwarepatternsandtechniquesopenspossibilitiesforproactivethreatdetection.Asnewmalware
variantsemerge,thesemodelscanbecontinuouslytrainedandupdatedtodetectevolving
threats,enhancingorganizations’overallsecurityposture.Researchsuggeststhat
organizationsmustemploycontinuouslearningandadaptivemodelstokeeppacewith
theever-evolvinglandscapeofmalwarethreats(Sindiramutty,2023).However,itis
crucialtoconsiderthelimitationsandpotentialrisksassociatedwithrelyingsolelyon
GenerativeAIformalwaredetection.Falsepositivesandnegativescanhavesignificanteffects,suchaswastedresourcesonbenignsamplesoroverlookingthreats.Inthisstudy,theGPT-4Turbomodel’shighFPRof1.0(Figure7)highlightstheneedforcautionandfurtherrefinement.Therefore,itisrecommendedthatGenerativeAImodelsbeusedasacomplementarytooltoworkalongsidetraditionalmalwaredetectionmethodsandhumananalysis.
4.2.RecommendationsForFutureResearch
Basedontheoutcomesofthisstudy,severalrecommendationsforfutureresearchcanbemadetoenhancetheeffectivenessandapplicabilityofGenerativeAImodelsin
memoryforensics.TheserecommendationsfocusonaddressingthelimitationsidentifiedinthecurrentstudyandexploringnewavenuestofurtheradvancethefieldofAI-assistedmemoryforensics.
4.2.1.ExpandedDataset
Oneofthecriticallimitationsofthecurrentstudyisthelimitedsizeofthedataset,whichconsistedofonlysixmemorydumpsamples.Whilethisdatasetallowedforan
initialevaluationoftheGenerativeAImodels’performance,futureresearchshouldaimtocollectamoreextensiveanddiversedatasettoenhancethemodel’sgeneralization
abilityandrobustness.Expandingthedatasettoincludehundredsorthousandsofmemorydumpsamplesfromvarioussourceswouldprovideamorecomprehensive
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
14
representationofreal-worldscenar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度石材石料購銷與礦山地質災害防治合同3篇
- 二零二五年西餐廳租賃合同范本2篇
- 二零二五版農業(yè)設施鋼板租賃合同范本2篇
- 二零二五年度網絡安全保障與應急預案合同
- 二零二五版農戶小額貸款合同組成要素解析3篇
- 二零二五年度龍門吊設備銷售合同附帶售后服務保障4篇
- 2025年度智能語音助手每日英語學習服務contract合同4篇
- 2025年西瓜種植與農產品進出口貿易合作合同范本3篇
- 2025版錨具生產原料采購合同范本4篇
- 二零二五年度金融產品居間代理合同范本2篇
- 《阻燃材料與技術》課件 第8講 阻燃木質材料
- 低空經濟的社會接受度與倫理問題分析
- JGJ120-2012建筑基坑支護技術規(guī)程-20220807013156
- 英語代詞專項訓練100(附答案)含解析
- GB/T 4732.1-2024壓力容器分析設計第1部分:通用要求
- 《采礦工程英語》課件
- NB-T31045-2013風電場運行指標與評價導則
- NB-T+10488-2021水電工程砂石加工系統設計規(guī)范
- 天津市和平區(qū)2023-2024學年七年級下學期6月期末歷史試題
- 微型消防站消防員培訓內容
- (完整版)鋼筋加工棚驗算
評論
0/150
提交評論