利用生成性人工智能進行記憶分析_第1頁
利用生成性人工智能進行記憶分析_第2頁
利用生成性人工智能進行記憶分析_第3頁
利用生成性人工智能進行記憶分析_第4頁
利用生成性人工智能進行記憶分析_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

Author:WilliamCopeland,wcopeland1981@Advisor:TimProffitt

Accepted:May28,2024

Abstract

Theincreasingsophisticationofmalwareposessignificantchallengesfortraditional

memoryanalysistechniquesindigitalforensics.Thisresearchexploresthepotentialof

leveragingGenerativeArtificialIntelligence(AI)models,specificallyOpenAI’sGPT-4

TurboandAnthropic’sClaude3Opus,toenhancemalwaredetectioninmemory.By

combiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,thisstudyaimstodevelopaninnovativeapproachforaccuratelyidentifyingandclassifyingmaliciousactivitiesinmemorydumps.Theresearch

methodologyinvolvescollectingadiversesetofmemorydumpsamples,preprocessingthedatausingVolatilityplugins,andevaluatingtheperformanceoftheAImodelsusingquantitativemetrics.

ThefindingshighlightthepotentialofGenerativeAImodelsineffectivelyidentifying

malware,whilealsorevealinglimitationsandareasforimprovement.Theimplications

suggestthatGenerativeAImodelscanserveasvaluablecomplementarytoolsalongsidetraditionalmalwaredetectionmethods,andfutureresearchrecommendationsinclude

expandingdatasets,developingdomain-specificmodels,andintegratingGenerativeAI

capabilitiesintoexistingmemoryforensicsworkflows.ThisstudylaysthefoundationforfurtherexplorationandadvancementofGenerativeAImodelsin-memoryanalysisand

malwaredetection.

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

2

1.Introduction

Indigitalforensics,memoryanalysisiscrucialinuncoveringvaluableevidence

andinsightsfromcomputersystems.Memorydumps,snapshotsofacomputer’svolatilememoryataspecifictime,containawealthofinformationaboutrunningprocesses,

networkconnections,andsystemactivities.However,malware’sincreasing

sophisticationandcomplexityposesignificantchallengesfortraditionalmemoryanalysistechniques.Researchhasshownthatmalwarehasreachedalevelofsophistication,

makingdetectionandanalysisextremelydifficultforforensicinvestigatorsandincidentrespondersduetomalwareauthorsemployingvariousobfuscationandevasion

techniques(Kolbitsch,etal.,2009).

Researchersandpractitionershaveturnedtoadvancedtoolsandframeworksto

addressthesechallenges,suchastheVolatilityFramework.TheVolatilityFrameworkisawidelyusedopen-sourcememoryforensicstoolthatprovidesacollectionofpluginsforextractingandanalyzingdatafrommemorysamplesfromdifferentoperationsystems

(TheVolatilityFramework,2024).However,theeffectivenessofmemoryanalysisheavilyreliesontheabilitytoaccuratelyidentifyandclassifymaliciouspatternsandbehaviorsintheextracteddata.

TheGenerativeArtificialIntelligence(AI)fieldhaswitnessedsignificant

advancementsinrecentyears,openingnewdataanalysisandpatternrecognition

possibilities.ModernGenerativeAImodelsincludeOpenAI’sGPT-4Turboand

Anthropic’sClaude3Opus.GPT-4Turboisalargemultimodalmodelwithalarger

contextwindowof128,000tokens,whichacceptstextorimagesasinputstoproducea

textoutput.Withbroadergeneralknowledgeandadvancedreasoningcapabilities,the

modelcanmoreaccuratelysolvecomplexproblems(Models,2024).Claude3Opusis

Anthropic’smostpowerfulmultimodalmodel,whichdeliversadvancedperformanceanddemonstratesahuman-likeunderstandingoftext(ModelsOverview,2024).Withan

extendedcontextwindowof200,000tokens,themodelcanprocesslargeamountsofdatatocompletehighlycomplextasks(LongContextWindowTips,2024).Toutilizethese

GenerativeAIcapabilities,apaidsubscriptionisrequiredtointeractwiththemodelviawebinterfaceoraccesstothemodelviaApplicationProgrammingInterface(API).

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

3

Overall,bothmodelsarepromisingcandidatesforapplicationinvariousdomains,includingcybersecurityanddigitalforensics.

ThisresearchexploresthepotentialofleveragingGenerativeAImodelsfor

enhancedmalwaredetectioninmemory.BycombiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,aninnovative

approachwillbedevelopedthatcanaccuratelyidentifyandclassifymaliciousactivitiesinmemorydumps,ultimatelystrengtheningthecapabilitiesofforensicinvestigatorsincombatingsophisticatedcyberthreats.

2.ResearchMethod

2.1.QuantitativeAnalysisMethod

Thisresearchwillutilizetheaccuracyanderrorratesmethodtoevaluatethe

performanceoftheGenerativeAImodels,specificallyOpenAI’sGPT-4Turboand

Anthropic’sClaude3Opus,inidentifyingmalwarewithmemorydumps.This

quantitativeanalysismethodprovidesastraightforwardapproachtomeasuringthe

overallproportionofsamplescorrectlyclassifiedbythemodel,whichaidsinidentifyingareasofimprovementforthemodel.Keymetricsarecalculatedbycomparingthe

models’predictionswiththegroundtruthlabels,suchasaccuracyanderrorrates,whichconsistoftheFalsePositiveRate(FPR)andFalseNegativeRate(FNR),toassessthe

effectivenessofmalwaredetection.Accuracy,asseeninFigure1,isthemeasurementoftheoverallcorrectnessofthemodelsinidentifyingmaliciousandbenignmemorydumps.

Accuracy=(TruePositive(TP)+TrueNegative(TN))/(TotalInstances)

Figure1:AccuracyCalculation

FPR,asseeninFigure2,calculatestheproportionofbenignsamplesincorrectlyclassifiedasmalicious.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

4

FPR=FalsePositive(FP)/(FalsePositive(FP)+TrueNegative(TN))

Figure2:FalsePositiveRateCalculation

FNR,asseeninFigure3,calculatestheproportionofmalicioussamplesincorrectlyclassifiedasbenign.

FNR=FalseNegative(FN)/(FalseNegative(FN)+TruePositive(TP))

Figure3:FalseNegativeRateCalculation

Thesemetricsprovideameanstoevaluatethemodels’performanceandhelpidentifytheirstrengthsandweaknessesinthecontextofmemoryforensics.

2.2.DataCollection

Thedatacollectionphaseinvolvedacquiringdiversememorydumpsamplesandcategorizingthemasmalicious,benign,orunknown.Toensurethereliabilityand

representativenessofthedataset,memorydumpsfromvarioussources,suchaspubliclyavailabledatasets,malwarerepositories,andreal-worldincidents,willbecollected.

TheVolatilityFrameworkwillextractvaluableinformationfromasystemduringmemoryacquisition,suchasprocesses,loadmodules,handles,andnetworkconnectionsfromeachmemorydumpsample(TheVolatilityFramework,2024).TheVolatility

plugin’soutputcreatesarichsetofartifactsanddatapointstoserveasinputforthe

GenerativeAImodels.ThreeartifactcategoriesofVolatilitypluginswereutilizedduringthisresearch:processes,networkconnections,andsuspiciousactivity.Figure4outlinesthepluginsforeachcategory.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

5

VolatilityFrameworkPlugins

Processes

NetworkConnections

SuspiciousActivity

pslistpsscan

netscan

malfindapihooks

cmdline

timeliner

dlllist

ldrmodules

handles

Figure4:VolatilityPlugins

Thesepluginswerechosenbasedontheirrelevancetomemoryanalysisandtheirabilitytoprovidevaluableinsightsintopotentialmaliciousactivities.

2.3.DataProcessing

Severalpreprocessingstepsmustbeperformedtopreparethecollecteddatafromthememorydump.First,theoutputfromtheVolatilitypluginsmustbecleaned,

aggregated,andconvertedintoastructuredformat,specificallyJavaScriptObjectNotation(JSON).Thisstandardizedformatwillfacilitatethedataingestionintothemodelsandensureconsistencyacrossdifferentmemorydumpsamples.

Next,alabelisappendedtothepreprocesseddatawiththesamplename,

operatingsystem,andthegroundtruthinformationforeachmemorydump.Thegroundtruthlabelswillclassifyeachsampleasmaliciousorbenign,providingareliable

referenceforevaluatingtheperformanceofthemodels.Figure5isthegroundtruthtableutilizedforthesamples.

Malicious

Benign

Sample-1

True

False

Sample-2

True

False

Sample-3

False

True

Sample-4

True

False

Sample-5

True

False

Sample-6

False

True

Figure5:GroundTruthTable

Furthermore,developinganappropriatesystempromptiscrucialforeffectivelyutilizingthemodels.Thepromptisdesignedtoelicitrelevantinformationfromthe

modelsbasedonthepreprocesseddata,enablingthemodeltomakeapredictionand

providemeaningfulinsights.Figure6isthesystempromptutilizedduringtheresearch.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

6

Youareanincidentresponderanalyzingamemorydumpfromapotentially

compromisedWindowssystemusingtheVolatilityframework.YouwillbeprovidedwiththeconsolidatedoutputoftheVolatilitypluginsrunagainstthememorydump.

YourtaskistocarefullyanalyzetheprovidedVolatilitypluginoutputtolookforevidencethatisofmalwareonthesystem.

Usethestep-by-stepinstructionsbelowtobuildaresponsetotheuser’sinput.

Step1-Theuserwillprovideyouwithdata.Providethefollowinginformation:<name>Providethesamplefilename.

<operatingsystem>Providetheoperatingsystemidentifiedinthefile.<key>Providethekeytothelabelkeypairinthedata.

<answer>InformtheuserifthedumpisMalicious,Benign,orUnknown.Onlyprovideoneanswer.

SampleName:<name>

OperatingSystem:<operatingsystem>

TruthLabel:<key>Prediction:<answer>

Step2-WriteoutyouranalysisandreasoningbasedontheVolatilityoutput.CitespecificlinesfromtheVolatilityoutputtojustifyyourreasoningwhereapplicable.

Figure6:SystemPrompt

2.4.ModelEvaluation

Evaluatingthemodelsrequiresasystempromptandingestingthepreprocesseddataintothemodelstoassesstheirperformanceusingquantitativemetrics.The

OpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelswereemployedforthispurpose,leveragingtheiradvanceddataanalysiscapabilitiestoanalyzethememory

dumpdata.

ThepreprocesseddatawasingestedintoOpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelsusingtheirrespectivedeveloperplatforms,OpenAI’sPlayground(Playground,2024)andAnthropic’sWorkbench(Workbench,2024).Theseweb-basedinterfacesprovideauser-friendlyenvironmentfordeveloperstosubmitdataandinteractwiththemodelsthroughtheirAPIs.Theplatformsallowforconfiguringmodel

parameters,suchastemperatureandtokenlimit,andprovideameanstoinputthesystempromptanddata.Uponsubmission,themodelsprocesstheinputandgeneratearesponsecontainingtheiranalysisandclassificationofthememorydumpsamples.Themodel’s

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

7

classificationsarethencomparedagainstthegroundtruthlabelsassociatedwitheachmemorydumpsampletoevaluatethemodels’performanceandcalculatetheaccuracy,FPR,andFNRmetrics.Bycomparingtheevaluationmetricsbetweenthemodels,the

researchwillshowinsightsthatcanbegleanedintotherelativestrengthsandweaknesses.

Insummary,theresearchmethodoutlinedinthissectionprovidesanapproachtoevaluatingtheeffectivenessofeachmodel.ItaimstocontributetotheadvancementofintegratingGenerativeAIintoforensicstechniquestocombatevolvingmalwarethreats.

3.FindingsandDiscussion

3.1.AnalysisofQuantitativeResults

Beforedivingintothequantitativeanalysisofthemodel’sperformance,itis

necessarytounderstandthenatureofthedatasetfedintothemodels.Theinputdatasetconsistedofextractedartifacts(runningprocesses,networkconnections,andsuspiciousmemoryregionswereextracted)frommemorysamples.Thesesamplesencompassedavarietyofmalwarefamilies,suchasransomware,trojans,androotkits,aswellasbenignmemorydumpsfromcleansystems.Includingmaliciousandbenignsampleswas

essentialtoaccuratelyassessthemodels’abilitytodistinguishbetweenthetwoclasses.

Itisimportanttonotethatthedatasetusedinthisanalysiswaslimitedtosix

samplesbutcontainedverycomplexdata.Thedatasetrepresentedvariousscenarios,

encompassingoperatingsystems,systemconfigurations,andmalwarebehaviors.The

complexityofthedatasetposedasignificantchallengeforthemodels,astheyneededtoidentifysubtlepatternsandindicatorsofcompromiseamidstavastamountofmemory

data.Byfeedingthemodelswithsuchacomprehensiveandchallengingdataset,theaimwastoassesstheirabilitytogeneralizeandaccuratelydetectmalwareinmemorydumps.

Thequantitativeanalysisofthemodels’performanceyieldedmeaningfulinsights.Thetruthtableandmodelpredictionsforeachsamplewereusedtocalculatethe

accuracy,FPR,andFNRforboththeGPT-4TurboandClaude3Opusmodels,refertoAppendixA–F.Figure7,AccuracyandErrorRates,consolidatesandprovidesthe

metricsforbothmodels.

wcopeland1981@

Accuracy

1

FalsePositiveRate

0

FalseNegativeRate

0

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

8

OpenAIGPT-4Turbo

AnthropicClaud3Opus

TruePositives(TP)

4

TruePositives(TP)

6

TrueNegatives(TN)

0

TrueNegatives(TN)

0

FalsePositives(FP)

2

FalsePositives(FP)

0

FalseNegatives(FN)

0

FalseNegatives(FN)

0

TotalSamples

6

TotalSamples

6

Accuracy

0.6666667

FalsePositiveRate

1

FalseNegativeRate

0

Figure7:AccuracyandErrorRates

Theaccuracy,FPR,andFNRvaluesrangefrom0to1,providingastandardizedmetricforevaluatingthemodels’performance.Accuracyrepresentstheoverall

correctnessofthemodelsinclassifyingmemorydumpsasmaliciousorbenign.Itis

calculatedbydividingthesumoftruepositives(correctlyidentifiedmalicioussamples)andtruenegatives(correctlyidentifiedbenignsamples)bythetotalnumberofsamples.Anaccuracycloserto1isanindicationofbetteroverallperformance.

Inthisanalysis,theGPT-4Turbomodelachievedanaccuracyof0.6666667,

whichmeansitcorrectlyclassifiedapproximately66.67%ofthesamples.Ontheotherhand,theClaude3Opusmodelachievedanaccuracyof1,indicatingthatitcorrectlyclassifiedallthesamplesinthedataset.

TheFalsePositiveRate(FPR)representstheproportionofbenignsamples

incorrectlyclassifiedasmalicious.Itiscalculatedbydividingthenumberoffalse

positives(benignsamplesincorrectlyidentifiedasmalicious)bythesumoffalse

positivesandtruenegatives(correctlyidentifiedbenignsamples).AnFPRcloserto0isdesirable,asitindicatesalowerrateoffalsealarms.TheGPT-4Turbomodel

demonstratedanFPRof1,incorrectlyclassifyingallbenignsamplesasmalicious.ThishighFPRsuggeststhattheGPT-4Turbomodeltendstogeneratefalsepositives,

potentiallyleadingtounnecessaryinvestigationeffortsandresourceallocation.In

contrast,theClaude3OpusmodelachievedanFPRof0,indicatingthatitdidnot

misclassifyanybenignsamplesasmalicious,whichisidealforreducingfalsealarms.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

9

TheFalseNegativeRate(FNR)representstheproportionofmalicioussamples

incorrectlyclassifiedasbenign.Itiscalculatedbydividingthenumberoffalsenegatives(malicioussamplesincorrectlyidentifiedasbenign)bythesumoffalsenegativesand

truepositives(correctlyidentifiedmalicioussamples).AnFNRcloserto0ispreferred,asitindicatesalowerrateofmissedmalware.TheGPT-4TurboandClaude3Opus

modelsdemonstratedanFNRof0,indicatingthattheycorrectlyidentifiedallthe

malicioussamplesinthedataset.ThisperfectFNRsuggeststhatbothmodelscandetectmalwarewithoutmissinganymaliciousinstances.

However,itiscrucialtoconsiderthelimitationsofthedatasetusedinthis

analysis.Thedatasetconsistsofalimitednumberofsamples,anditisvitaltoevaluatethemodels’performanceonamoreextensiveanddiversedatasettoassesstheir

generalizationcapability.Additionally,themodel’sabilitytodetectunseenmalwaresamplesinreal-worldscenariosshouldbevalidatedtoensuretheireffectivenessincategorizingsophisticatedandevolvingmalware.

RefertoAppendixA-FtoreviewthecompleteresponsefromGPT-4TurboandClaude3Opusmodelsforthesampledatasubmitted.

3.2.Limitations

Despitethepromisingresults,itisvitaltoacknowledgethelimitationsofthe

currentresearch.Onelimitationisthesizeanddiversityofthedatasetusedfor

evaluation.Whileeffortsweremadetocollectarepresentativesampleofmemorydumps,thedatasetdoesnotencompassallpossiblevariationsandemergingmalwaretechniques.Futureresearchshouldexpandthedatasetandincludeamorecomprehensiverangeof

malwarefamiliesandsystemconfigurations.

Anotherlimitationwastheconstraintposedbythecontextwindowsizeofthe

GPT-4TurboandClaude3Opusmodels.TheClaude3Opusmodelhasasignificantly

largercontextwindow,capableofprocessingupto72,000moretokensthantheGPT-4Turbomodel.ThisdifferenceintokencapacitypresentedchallengeswhensubmittingthedatageneratedbytheVolatilityplugins.Duetotheextensiveamountofdataproduced,

thetokenlimitofthemodelwasexceeded.Aniterativeprocesswasemployedto

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

10

reconfigurethepluginselectiontoensurethatthedatageneratedbytheVolatilitypluginsdidnotexceedthetokenlimitofthemodels.Theobjectivewastofindanoptimal

balancebetweencollectingacomprehensivesetofartifactsandreducingtheoveralldatasize.Theprocessinvolvedexchangingpluginsmultipletimesandevaluatingtheimpactonthetokencount.Aftereachreconfiguration,theresultingdatawassubmittedto

OpenAI’sTokenizer(Tokenizer,2024)andHuggingFacesTokenizertool(TokenizerArena,2024),whichcalculatedthetokensizeofthedata.Thisiterativeprocesswas

repeateduntilthedataforeachmemorydumpsamplewaswithinthe128,000tokens,

ensuringthedatadidnotexceedthecontextwindowforbothmodels.Asaresultofthisoptimization,theinitialsetoftenpluginshadtobenarroweddowntoasubsetofsix

plugins.Figure8presentstherefinedlistofpluginsusedinthefinalanalysis.

VolatilityFrameworkPlugins

Processes

NetworkConnections

SuspiciousActivity

pslistpsscan

netscan

malfindapihooks

cmdline

Figure8:VolatilityPlugins

Thisreductionallowedforthesuccessfulsubmissionofthedatatobothmodelswithoutexceedingtheirtokencapacities.However,italsomeantthatsomepotentiallyvaluableinformationfromtheexcludedpluginscouldnotbeincorporatedintotheanalysis.Thislimitationhighlightsthetrade-offswhenworkingwithAImodelswithdifferentcontextwindowsizes.

Moreover,themodelsusedinthisresearch,GPT-4TurboandClaude3Opus,haveinherentlimitations.Thesemodelsarebasedonnaturallanguageprocessingandmaynotbedesignedexplicitlyformalwaredetectioninmemorydumps.Further,fine-tuningandadaptingthemodelstothespecificdomainofmemoryforensicscould

enhancetheirperformance.

3.3.AreasofImprovement

Severalareasforimprovementcanbeidentifiedbasedonthefindingsand

limitationsdiscussed.First,thepreprocessingtechniquesappliedtothememorydump

datacouldbefurtherrefined.Exploringtechniquestoefficientlycompressorsummarize

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

11

thedatageneratedbytheVolatilitypluginswouldenabletheinclusionofmorecomprehensiveinformationwithinthetokenlimitsofthemodels.

Secondly,thepromptsusedtointeractwiththemodelscanbeoptimized.

Developingmoretargetedandcontext-specificpromptscouldimprovethemodels’

abilitytoidentifymaliciouspatternsaccurately.PromptdevelopmentiscrucialingettingthemostoutofGenerativeAImodels.Researcherscanguidethemodelsbycarefully

designingpromptstoproducemoreaccurateandrelevantresponsesformalwaredetectionandothertasks.

Whenoptimizingprompts,severalkeyfactorsshouldbeconsidered.Thepromptshouldhaveaclearobjective,explicitlystatingwhatthemodelshouldachieve(PromptEngineering,2024).Providingspecificdetailsorparametersrelevanttothetaskcan

furtherguidethemodel’sresponse.Usingconciseandunambiguouslanguagereduces

confusionandimprovesthemodel’sunderstandingofthetask.Includingrelevant

context,framingthepromptasaquestionordirective,andspecifyingtheroleorpersonathemodelshouldadoptcanalsohelprefinetheresponsestyleanddepthaccordingtotheassumedexpertise(PromptEngineering,2024).Breakingcomplextasksintoclear,

manageablestepsandprovidingexamplescanleadtomorestructuredandcoherentresponses(PromptEngineering,2024).

Promptdevelopmentisaniterativeprocessthatrequiresexperimentationand

refinement.Researchersshouldcontinuouslyevaluatethemodel’sresponsesandadjustthepromptsaccordingly.Well-craftedpromptscansignificantlyenhancethemodels’

abilitytoidentifymaliciouspatternsaccuratelyinthecontextofmalwaredetection.Bycarefullydesigningpromptsthatalignwitheachtask’sspecificobjectivesand

requirements,researchersandpractitionerscanharnessthepowerofthesemodelstosolvecomplexproblemsandgeneratevaluableinsights.

Additionally,incorporatingdomain-specificknowledgeandrulesintothemodelscouldenhancetheirperformance.Byintegratingexpertknowledgeandheuristicsfrom

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

12

memoryforensics,themodelscanbeguidedtowardamoreaccurateandcontext-awareprediction.

Furthermore,exploringensembletechniquesthatcombineGenerativeAImodelsorintegratingthemwithtraditionalmalwaredetectionmethodscouldprovideamore

robustapproachtoidentifyingmalwareinmemorydumps.

3.4.ReflectionontheResearchObjective

Theresearchobjectivessetoutatthebeginninghavebeensuccessfullyaddressed.Thequantitativeanalysismethod,utilizingaccuracyanderrorrates,providedameanstoevaluateGenerativeAImodels’performanceindetectingmalwareinmemorydumps.

Thedatacollectionandpreprocessingsteps,leveragingtheVolatilityFrameworkandselectedplugins,enabledtheextractionofartifactsfrommemorydumps.The

preprocesseddatawasinputfortheGenerativeAImodels,facilitatingtheirevaluationandanalysis.

Thefindingsanddiscussionsectionprovidedin-depthinsightsintothemodels’

performance,limitations,andareasforimprovement.Theimplicationsofthefindingsforenhancingmalwaredetectioninmemorywereexplored,highlightingthepotential

benefitsandchallengesassociatedwithintegratingGenerativeAImodelsinmemoryforensics.

4.ImplicationsandRecommendations

4.1.ImplicationsoftheFindings

Thefindingsofthisresearchhavesignificantimplicationsforimprovingmalwaredetectioninmemory.ThegenerativeAImodels’highaccuracyandrelativelylowerrorratesdemonstratetheirpotentialasavaluabletoolformemoryforensicspractitioners.

ByleveragingthepowerofGenerativeAI,investigatorscanautomateand

acceleratetheprocessofanalyzingmemorydumps,enablingthemtoidentifypotential

malwareinfectionsquickly.TheexperimentalresultsinthisstudyshowthattheClaude3Opusmodelachievedaperfectaccuracyscoreof1andanFNRof0,indicatingitsabilitytocorrectlyidentifyallmalicioussampleswithoutmissingany(Figure7).Thislevelof

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

13

accuracycanconsiderablyreducethetimeandenergyrequiredformanualanalysis,

allowingformoreefficientandeffectiveincidentresponse.ResearchhasshownthatAI-basedtechnologiesleveragedindigitalforensicinvestigationscandrasticallysavethe

timeneededtoevaluateanduncoverpotentialsecuritybreaches(Fakiha,2023).

Moreover,theabilityofgenerativeAImodelstolearnandadapttonewmalwarepatternsandtechniquesopenspossibilitiesforproactivethreatdetection.Asnewmalware

variantsemerge,thesemodelscanbecontinuouslytrainedandupdatedtodetectevolving

threats,enhancingorganizations’overallsecurityposture.Researchsuggeststhat

organizationsmustemploycontinuouslearningandadaptivemodelstokeeppacewith

theever-evolvinglandscapeofmalwarethreats(Sindiramutty,2023).However,itis

crucialtoconsiderthelimitationsandpotentialrisksassociatedwithrelyingsolelyon

GenerativeAIformalwaredetection.Falsepositivesandnegativescanhavesignificanteffects,suchaswastedresourcesonbenignsamplesoroverlookingthreats.Inthisstudy,theGPT-4Turbomodel’shighFPRof1.0(Figure7)highlightstheneedforcautionandfurtherrefinement.Therefore,itisrecommendedthatGenerativeAImodelsbeusedasacomplementarytooltoworkalongsidetraditionalmalwaredetectionmethodsandhumananalysis.

4.2.RecommendationsForFutureResearch

Basedontheoutcomesofthisstudy,severalrecommendationsforfutureresearchcanbemadetoenhancetheeffectivenessandapplicabilityofGenerativeAImodelsin

memoryforensics.TheserecommendationsfocusonaddressingthelimitationsidentifiedinthecurrentstudyandexploringnewavenuestofurtheradvancethefieldofAI-assistedmemoryforensics.

4.2.1.ExpandedDataset

Oneofthecriticallimitationsofthecurrentstudyisthelimitedsizeofthedataset,whichconsistedofonlysixmemorydumpsamples.Whilethisdatasetallowedforan

initialevaluationoftheGenerativeAImodels’performance,futureresearchshouldaimtocollectamoreextensiveanddiversedatasettoenhancethemodel’sgeneralization

abilityandrobustness.Expandingthedatasettoincludehundredsorthousandsofmemorydumpsamplesfromvarioussourceswouldprovideamorecomprehensive

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

14

representationofreal-worldscenar

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論