河南省漯河市第五高級(jí)中學(xué)2025屆高考仿真卷數(shù)學(xué)試題含解析_第1頁(yè)
河南省漯河市第五高級(jí)中學(xué)2025屆高考仿真卷數(shù)學(xué)試題含解析_第2頁(yè)
河南省漯河市第五高級(jí)中學(xué)2025屆高考仿真卷數(shù)學(xué)試題含解析_第3頁(yè)
河南省漯河市第五高級(jí)中學(xué)2025屆高考仿真卷數(shù)學(xué)試題含解析_第4頁(yè)
河南省漯河市第五高級(jí)中學(xué)2025屆高考仿真卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省漯河市第五高級(jí)中學(xué)2025屆高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列的各項(xiàng)均為正數(shù),設(shè)其前n項(xiàng)和,若(),則()A.30 B. C. D.622.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.33.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.向量,,且,則()A. B. C. D.5.已知等比數(shù)列滿(mǎn)足,,等差數(shù)列中,為數(shù)列的前項(xiàng)和,則()A.36 B.72 C. D.6.已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為()A. B. C. D.7.已知雙曲線:,,為其左、右焦點(diǎn),直線過(guò)右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.8.已知我市某居民小區(qū)戶(hù)主人數(shù)和戶(hù)主對(duì)戶(hù)型結(jié)構(gòu)的滿(mǎn)意率分別如圖和如圖所示,為了解該小區(qū)戶(hù)主對(duì)戶(hù)型結(jié)構(gòu)的滿(mǎn)意程度,用分層抽樣的方法抽取的戶(hù)主進(jìn)行調(diào)查,則樣本容量和抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,189.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.10.拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),,則()A. B. C. D.11.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.12.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)為雙曲線的右焦點(diǎn),兩點(diǎn)在雙曲線上,且關(guān)于原點(diǎn)對(duì)稱(chēng),若,設(shè),且,則該雙曲線的焦距的取值范圍是________.14.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.15.設(shè)滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最小值為_(kāi).16.在某批次的某種燈泡中,隨機(jī)抽取200個(gè)樣品.并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計(jì)2001某人從燈泡樣品中隨機(jī)地購(gòu)買(mǎi)了個(gè),如果這個(gè)燈泡的壽命情況恰好與按四個(gè)組分層抽樣所得的結(jié)果相同,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.19.(12分)設(shè)直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿(mǎn)足?并說(shuō)明理由.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點(diǎn)為,當(dāng)變化時(shí),點(diǎn)的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,,點(diǎn)為射線與曲線的交點(diǎn),求點(diǎn)的極徑.21.(12分)在國(guó)家“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入.為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷(xiāo),得到一組檢測(cè)數(shù)據(jù)如表所示:試銷(xiāo)價(jià)格(元)產(chǎn)品銷(xiāo)量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過(guò)計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰(shuí)的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過(guò),則稱(chēng)該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)為的概率.22.(10分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù),分別令,結(jié)合等比數(shù)列的通項(xiàng)公式,得到關(guān)于首項(xiàng)和公比的方程組,解方程組求出首項(xiàng)和公式,最后利用等比數(shù)列前n項(xiàng)和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項(xiàng)公式可得:,因此.故選:B【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.2、A【解析】

根據(jù)復(fù)數(shù)除法運(yùn)算化簡(jiǎn),結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.3、B【解析】

化簡(jiǎn)復(fù)數(shù),由它是純虛數(shù),求得,從而確定對(duì)應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對(duì)應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.4、D【解析】

根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.5、A【解析】

根據(jù)是與的等比中項(xiàng),可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿(mǎn)足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點(diǎn)睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,是中檔題.6、A【解析】

若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫(huà)出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,∴,當(dāng)時(shí),,當(dāng),,函數(shù)恒過(guò)點(diǎn),分別畫(huà)出與的圖象,如圖所示,,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,∴且,即,且∴,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問(wèn)題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.7、D【解析】

由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.8、A【解析】

利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù)為:故選A.【點(diǎn)睛】本題考查樣本容量和抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.9、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)復(fù)數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.10、B【解析】

根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.11、B【解析】

先辨別出圖象中實(shí)線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿(mǎn)足不等式對(duì)應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個(gè)極值點(diǎn),但其導(dǎo)函數(shù)圖象(實(shí)線)與軸有三個(gè)交點(diǎn),不合乎題意;若實(shí)線部分為函數(shù)的圖象,則該函數(shù)有兩個(gè)極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個(gè)交點(diǎn),合乎題意.對(duì)函數(shù)求導(dǎo)得,由得,由圖象可知,滿(mǎn)足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.12、A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點(diǎn)睛】本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運(yùn)算能力,是一道中檔題.14、【解析】

利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)滿(mǎn)足約束條件,畫(huà)出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù)取得最小值.【詳解】由滿(mǎn)足約束條件,畫(huà)出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn)此時(shí),目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.16、10【解析】

先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個(gè),第二組有60個(gè),第三組有80個(gè),第四組有20個(gè),所以四個(gè)組的比例為2:3:4:1,所以按分層抽樣法,購(gòu)買(mǎi)的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點(diǎn)睛】本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)詳解;(2)【解析】

(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;

(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點(diǎn)存在定理可知有唯一零點(diǎn),且.由此判斷出時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數(shù)在,處取得極值1,,且,,,令,則為增函數(shù),,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調(diào)遞增,且,有唯一零點(diǎn),且,當(dāng)時(shí),,,單調(diào)遞減;當(dāng)時(shí),,,單調(diào)遞增.,由整理得,令,則方程等價(jià)于而在上恒大于零,在上單調(diào)遞增,.,∴實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的極值,利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,函數(shù)的零點(diǎn)存在定理,證明不等式,解決不等式恒成立問(wèn)題.其中多次構(gòu)造函數(shù),是解題的關(guān)鍵,屬于綜合性很強(qiáng)的難題.18、(1);(2)【解析】

(1),對(duì)函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對(duì)求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時(shí),在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時(shí),令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時(shí),在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問(wèn)題,利用分類(lèi)討論是解決本題的較好方法,屬于中檔題.19、(1)證明見(jiàn)解析(0,2);(2)存在,理由見(jiàn)解析【解析】

(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過(guò)定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過(guò)原點(diǎn),故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過(guò)定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿(mǎn)足題意.【點(diǎn)睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.20、(1);(2)【解析】

(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論