山西中醫(yī)藥大學(xué)《統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
山西中醫(yī)藥大學(xué)《統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
山西中醫(yī)藥大學(xué)《統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
山西中醫(yī)藥大學(xué)《統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
山西中醫(yī)藥大學(xué)《統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)山西中醫(yī)藥大學(xué)《統(tǒng)計(jì)學(xué)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的生存分析常用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者接受某種治療后疾病復(fù)發(fā)的時(shí)間,以下哪個(gè)概念是生存分析中的關(guān)鍵指標(biāo)?()A.生存函數(shù)B.風(fēng)險(xiǎn)函數(shù)C.中位生存時(shí)間D.以上都是2、對(duì)于一個(gè)分類(lèi)問(wèn)題,如果不同類(lèi)別的樣本數(shù)量差異較大,在評(píng)估模型性能時(shí),以下哪種指標(biāo)需要特別關(guān)注?()A.準(zhǔn)確率B.召回率C.F1值D.以上都是3、假設(shè)要評(píng)估一個(gè)數(shù)據(jù)分析模型的性能,以下關(guān)于評(píng)估指標(biāo)和方法的描述,正確的是:()A.準(zhǔn)確率是唯一可靠的評(píng)估指標(biāo),能全面反映模型的好壞B.召回率在所有情況下都比精確率更重要C.交叉驗(yàn)證可以有效地避免模型過(guò)擬合,并且能更準(zhǔn)確地評(píng)估模型在不同數(shù)據(jù)子集上的性能D.對(duì)于不平衡數(shù)據(jù)集,使用平衡準(zhǔn)確率來(lái)評(píng)估模型是不合適的4、當(dāng)處理高維度的數(shù)據(jù)時(shí),以下哪種方法可以用于降低數(shù)據(jù)的維度,同時(shí)保留重要的信息?()A.主成分分析B.因子分析C.線性判別分析D.以上都是5、假設(shè)要分析某公司產(chǎn)品在不同市場(chǎng)的銷(xiāo)售趨勢(shì),同時(shí)考慮市場(chǎng)的競(jìng)爭(zhēng)情況和宏觀經(jīng)濟(jì)環(huán)境,以下哪種分析方法較為綜合?()A.情景分析B.敏感性分析C.蒙特卡羅模擬D.以上都不是6、當(dāng)分析兩個(gè)連續(xù)變量之間的線性關(guān)系時(shí),以下哪個(gè)統(tǒng)計(jì)量的值在-1到1之間?()A.相關(guān)系數(shù)B.決定系數(shù)C.方差膨脹因子D.協(xié)方差7、數(shù)據(jù)分析中的回歸分析用于建立自變量和因變量之間的關(guān)系模型。假設(shè)我們要研究房?jī)r(jià)與房屋面積、地理位置等因素的關(guān)系。以下關(guān)于回歸分析的描述,哪一項(xiàng)是不正確的?()A.多元線性回歸可以同時(shí)考慮多個(gè)自變量對(duì)因變量的影響B(tài).回歸模型的擬合優(yōu)度可以通過(guò)R平方值來(lái)評(píng)估C.存在共線性問(wèn)題時(shí),回歸模型的參數(shù)估計(jì)會(huì)不準(zhǔn)確,但不影響預(yù)測(cè)效果D.可以通過(guò)逐步回歸等方法選擇對(duì)因變量有顯著影響的自變量8、在數(shù)據(jù)分析的預(yù)測(cè)模型選擇中,假設(shè)數(shù)據(jù)具有非線性和復(fù)雜的特征,且樣本數(shù)量有限。以下哪種模型可能在這種情況下表現(xiàn)更出色?()A.決策樹(shù)集成模型,如隨機(jī)森林B.神經(jīng)網(wǎng)絡(luò),具有強(qiáng)大的擬合能力C.支持向量回歸,處理小樣本D.堅(jiān)持使用簡(jiǎn)單的線性模型9、數(shù)據(jù)分析中的數(shù)據(jù)標(biāo)注對(duì)于監(jiān)督學(xué)習(xí)算法至關(guān)重要。假設(shè)要對(duì)圖像數(shù)據(jù)進(jìn)行分類(lèi)標(biāo)注,以下關(guān)于數(shù)據(jù)標(biāo)注方法的描述,正確的是:()A.讓非專業(yè)人員進(jìn)行標(biāo)注,不進(jìn)行質(zhì)量控制B.不制定標(biāo)注規(guī)范和標(biāo)準(zhǔn),導(dǎo)致標(biāo)注結(jié)果不一致C.組織專業(yè)的標(biāo)注團(tuán)隊(duì),制定明確的標(biāo)注規(guī)范和流程,進(jìn)行質(zhì)量檢查和審核,確保標(biāo)注數(shù)據(jù)的準(zhǔn)確性和一致性D.認(rèn)為數(shù)據(jù)標(biāo)注是簡(jiǎn)單的任務(wù),不需要投入太多資源和時(shí)間10、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)我們要展示不同地區(qū)銷(xiāo)售額的分布情況。以下關(guān)于數(shù)據(jù)可視化的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.柱狀圖適合比較不同類(lèi)別之間的數(shù)量差異B.折線圖常用于展示數(shù)據(jù)隨時(shí)間的變化趨勢(shì)C.餅圖能夠清晰地顯示各部分?jǐn)?shù)據(jù)占總體的比例關(guān)系,但不適合數(shù)據(jù)類(lèi)別過(guò)多的情況D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來(lái)更美觀,對(duì)數(shù)據(jù)分析的幫助不大11、數(shù)據(jù)分析中的決策樹(shù)算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們要使用決策樹(shù)算法進(jìn)行分類(lèi)任務(wù)。以下關(guān)于決策樹(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹(shù)通過(guò)對(duì)數(shù)據(jù)的遞歸劃分來(lái)構(gòu)建分類(lèi)規(guī)則B.可以使用信息增益或基尼指數(shù)來(lái)選擇最優(yōu)的劃分屬性C.決策樹(shù)容易受到噪聲數(shù)據(jù)的影響,導(dǎo)致過(guò)擬合D.決策樹(shù)的深度越深,分類(lèi)效果就一定越好12、假設(shè)要分析一個(gè)電商平臺(tái)的用戶評(píng)論數(shù)據(jù),以提取用戶的意見(jiàn)和情感傾向。以下哪種自然語(yǔ)言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識(shí)別D.以上都是13、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的14、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的配色方案選擇也很重要。假設(shè)要?jiǎng)?chuàng)建一個(gè)展示銷(xiāo)售數(shù)據(jù)的圖表,以下關(guān)于配色方案選擇的描述,正確的是:()A.隨意選擇喜歡的顏色,不考慮顏色的對(duì)比度和可讀性B.使用過(guò)于鮮艷和刺眼的顏色組合,以吸引注意力C.遵循色彩理論和設(shè)計(jì)原則,選擇對(duì)比度高、易于區(qū)分和視覺(jué)舒適的配色方案,使數(shù)據(jù)清晰可讀,并根據(jù)數(shù)據(jù)的性質(zhì)和重要性進(jìn)行顏色映射D.不考慮色盲和色弱人群的觀看體驗(yàn),只追求美觀15、在數(shù)據(jù)分析中,數(shù)據(jù)的歸一化和標(biāo)準(zhǔn)化是常見(jiàn)的操作。假設(shè)你有一個(gè)包含不同量綱特征的數(shù)據(jù)集,以下關(guān)于這兩種操作的作用,哪一項(xiàng)是最關(guān)鍵的?()A.使數(shù)據(jù)符合正態(tài)分布,便于進(jìn)行統(tǒng)計(jì)分析B.消除特征之間的量綱差異,使不同特征具有可比性C.增加數(shù)據(jù)的多樣性和復(fù)雜性D.沒(méi)有實(shí)際作用,可以忽略16、數(shù)據(jù)分析中的數(shù)據(jù)探索不僅包括數(shù)值型數(shù)據(jù),也包括類(lèi)別型數(shù)據(jù)。假設(shè)要分析一個(gè)包含職業(yè)信息的類(lèi)別型數(shù)據(jù)集,以下哪種方法可能有助于了解不同職業(yè)的分布情況?()A.計(jì)算每個(gè)職業(yè)的頻數(shù)B.繪制職業(yè)的直方圖C.進(jìn)行職業(yè)的聚類(lèi)分析D.以上方法都可以17、在數(shù)據(jù)分析中,聚類(lèi)算法用于將數(shù)據(jù)分為不同的組。假設(shè)我們要對(duì)客戶進(jìn)行細(xì)分。以下關(guān)于聚類(lèi)算法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.K-Means算法需要事先指定聚類(lèi)的數(shù)量B.層次聚類(lèi)可以形成層次結(jié)構(gòu)的聚類(lèi)結(jié)果C.聚類(lèi)算法的結(jié)果是唯一確定的,不受初始值和參數(shù)的影響D.可以根據(jù)業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)選擇合適的聚類(lèi)算法18、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是存儲(chǔ)和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以整合來(lái)自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)通常是經(jīng)過(guò)清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉(cāng)庫(kù)只適用于大型企業(yè),對(duì)于中小企業(yè)來(lái)說(shuō)沒(méi)有必要建設(shè)19、對(duì)于一個(gè)具有分類(lèi)和數(shù)值型特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)處理,以下哪些步驟可能會(huì)被包括?()A.編碼分類(lèi)特征B.處理異常值C.標(biāo)準(zhǔn)化數(shù)值型特征D.以上都是20、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時(shí),需要對(duì)數(shù)據(jù)進(jìn)行探索性分析。以下哪個(gè)工具常用于探索性數(shù)據(jù)分析?()A.ExcelB.SPSSC.PythonD.R21、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架如Hadoop被廣泛應(yīng)用。假設(shè)要對(duì)數(shù)十億行的日志數(shù)據(jù)進(jìn)行分析,以下哪個(gè)Hadoop組件可能主要負(fù)責(zé)數(shù)據(jù)的存儲(chǔ)?()A.HDFSB.MapReduceC.YARND.Hive22、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷(xiāo)售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對(duì)照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過(guò)控制混雜因素來(lái)推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來(lái)解決因果推斷中的內(nèi)生性問(wèn)題23、數(shù)據(jù)分析中的回歸分析用于建立變量之間的定量關(guān)系。假設(shè)要建立一個(gè)線性回歸模型來(lái)預(yù)測(cè)氣溫對(duì)空調(diào)銷(xiāo)量的影響。如果模型的殘差呈現(xiàn)出明顯的非線性模式,可能表明什么?()A.應(yīng)該使用非線性回歸模型來(lái)改進(jìn)預(yù)測(cè)效果B.數(shù)據(jù)中存在異常值,需要進(jìn)行處理C.模型的擬合效果很好,無(wú)需進(jìn)一步改進(jìn)D.收集的數(shù)據(jù)不足以進(jìn)行有效的分析24、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布和趨勢(shì),以下哪種組合的圖表較為合適?()A.直方圖和折線圖B.箱線圖和散點(diǎn)圖C.餅圖和柱狀圖D.雷達(dá)圖和樹(shù)形圖25、在進(jìn)行數(shù)據(jù)可視化時(shí),選擇合適的圖表類(lèi)型要根據(jù)數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)你要展示不同年齡段人群的收入分布情況,以下關(guān)于圖表選擇的建議,哪一項(xiàng)是最恰當(dāng)?shù)??()A.使用折線圖,體現(xiàn)收入隨年齡的變化趨勢(shì)B.運(yùn)用柱狀圖,比較不同年齡段的收入水平C.選擇餅圖,展示各年齡段收入在總體中的占比D.采用雷達(dá)圖,綜合展示多個(gè)相關(guān)變量26、假設(shè)要分析某網(wǎng)站不同頁(yè)面的訪問(wèn)量分布情況,以下哪種圖表能夠直觀地展示訪問(wèn)量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是27、在進(jìn)行數(shù)據(jù)分析時(shí),異常值的檢測(cè)和處理是重要的環(huán)節(jié)。假設(shè)我們?cè)诜治鲆唤M生產(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù)。以下關(guān)于異常值的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.異常值可能是由于數(shù)據(jù)錄入錯(cuò)誤或特殊情況導(dǎo)致的B.可以通過(guò)箱線圖等方法直觀地檢測(cè)異常值C.對(duì)于異常值,應(yīng)該立即刪除,以免影響分析結(jié)果D.對(duì)異常值的處理需要根據(jù)具體情況進(jìn)行判斷,有時(shí)需要進(jìn)一步調(diào)查原因28、在進(jìn)行地理數(shù)據(jù)分析時(shí),以下關(guān)于地理數(shù)據(jù)分析方法的描述,正確的是:()A.簡(jiǎn)單的地圖繪制就能充分展示地理數(shù)據(jù)的特征B.空間聚類(lèi)分析對(duì)于發(fā)現(xiàn)地理數(shù)據(jù)中的聚集模式?jīng)]有幫助C.地理加權(quán)回歸可以考慮空間異質(zhì)性對(duì)變量關(guān)系的影響D.不需要考慮地理坐標(biāo)系和投影的選擇,對(duì)分析結(jié)果影響不大29、在數(shù)據(jù)庫(kù)中,若要優(yōu)化數(shù)據(jù)庫(kù)的存儲(chǔ)結(jié)構(gòu),以下哪個(gè)操作可能會(huì)被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是30、假設(shè)要分析某公司不同產(chǎn)品線的利潤(rùn)貢獻(xiàn)度,以下哪種圖表能夠清晰地展示各產(chǎn)品線的利潤(rùn)占比及排名?()A.帕累托圖B.?;鶊DC.弦圖D.以上都不是二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在金融市場(chǎng)的信用衍生品定價(jià)中,如何運(yùn)用數(shù)據(jù)分析評(píng)估信用風(fēng)險(xiǎn),確定合理的定價(jià)模型和參數(shù)。2、(本題5分)隨著物聯(lián)網(wǎng)技術(shù)的發(fā)展,智能家居設(shè)備產(chǎn)生了大量的數(shù)據(jù)。以某智能家居系統(tǒng)為例,論述如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化能源管理、提升家居安全性、實(shí)現(xiàn)個(gè)性化的用戶體驗(yàn),以及如何解決設(shè)備兼容性和數(shù)據(jù)標(biāo)準(zhǔn)化的問(wèn)題。3、(本題5分)在物流行業(yè),運(yùn)輸數(shù)據(jù)、倉(cāng)儲(chǔ)數(shù)據(jù)和訂單數(shù)據(jù)等可以通過(guò)數(shù)據(jù)分析進(jìn)行優(yōu)化。論述如何利用數(shù)據(jù)分析降低物流成本、提高配送效率、優(yōu)化倉(cāng)儲(chǔ)布局,并結(jié)合供應(yīng)鏈管理探討數(shù)據(jù)分析的整合應(yīng)用。4、(本題5分)電商倉(cāng)儲(chǔ)管理中,如何借助數(shù)據(jù)分析來(lái)優(yōu)化庫(kù)存布局、提高揀貨效率和降低倉(cāng)儲(chǔ)成本?請(qǐng)深入探討數(shù)據(jù)分析在倉(cāng)儲(chǔ)管理中的具體應(yīng)用和效果評(píng)估方法。5、(本題5分)在線旅游預(yù)訂平臺(tái)如何通過(guò)數(shù)據(jù)分析來(lái)預(yù)測(cè)用戶需求、推薦個(gè)性化旅游產(chǎn)品和優(yōu)化用戶體驗(yàn)?請(qǐng)論述數(shù)據(jù)分析在旅游預(yù)訂業(yè)務(wù)中的應(yīng)用場(chǎng)景、技術(shù)挑戰(zhàn)和解決方案。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在進(jìn)行回歸分析時(shí),如何處理非線性關(guān)系?請(qǐng)介紹一些處理非線性關(guān)系的方法,如多項(xiàng)式回歸、樣條回歸等,并舉例說(shuō)明。2、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何處理數(shù)據(jù)中的語(yǔ)義歧義?闡述自然語(yǔ)言處理中的消歧方法和應(yīng)用。3、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的語(yǔ)義理解和知識(shí)圖譜構(gòu)建,包括實(shí)體識(shí)別、關(guān)系抽取等技術(shù)。4、(本題5分)闡述主成分分析(PCA)的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論