福建省廈門海滄實驗中學2025屆高三最后一卷數(shù)學試卷含解析_第1頁
福建省廈門海滄實驗中學2025屆高三最后一卷數(shù)學試卷含解析_第2頁
福建省廈門海滄實驗中學2025屆高三最后一卷數(shù)學試卷含解析_第3頁
福建省廈門海滄實驗中學2025屆高三最后一卷數(shù)學試卷含解析_第4頁
福建省廈門海滄實驗中學2025屆高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省廈門海滄實驗中學2025屆高三最后一卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.2.已知等差數(shù)列中,則()A.10 B.16 C.20 D.243.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.4.設點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件5.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是1036.設為定義在上的奇函數(shù),當時,(為常數(shù)),則不等式的解集為()A. B. C. D.7.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變8.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且9.設向量,滿足,,,則的取值范圍是A. B.C. D.10.已知函數(shù),且),則“在上是單調函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件11.一個超級斐波那契數(shù)列是一列具有以下性質的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.612.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為____.14.設函數(shù),則滿足的的取值范圍為________.15.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數(shù)的概率為________.16.公比為正數(shù)的等比數(shù)列的前項和為,若,,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)根據(jù)國家統(tǒng)計局數(shù)據(jù),1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計圖表,判斷與(其中為自然對數(shù)的底數(shù))哪一個更適宜作為全國GDP總量關于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關于的回歸方程.(2)使用參考數(shù)據(jù),估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數(shù)據(jù):45678的近似值551484031097298118.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.19.(12分)某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失?。畷x級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02420.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.21.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個零點,且,求的取值范圍.22.(10分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

據(jù)題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據(jù)坐標形式下向量的數(shù)量積運算計算出結果.【詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.2、C【解析】

根據(jù)等差數(shù)列性質得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質,是數(shù)列的常考題型.3、B【解析】

先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.4、C【解析】

利用向量垂直的表示、向量數(shù)量積的運算,結合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎題.5、D【解析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.6、D【解析】

由可得,所以,由為定義在上的奇函數(shù)結合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調遞增,注意到,再利用函數(shù)單調性即可解決.【詳解】因為在上是奇函數(shù).所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數(shù)的奇偶性、單調性解不等式,考查學生對函數(shù)性質的靈活運用能力,是一道中檔題.7、C【解析】

根據(jù)線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.8、D【解析】

首先把三視圖轉換為幾何體,根據(jù)三視圖的長度,進一步求出個各棱長.【詳解】根據(jù)幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.9、B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.10、C【解析】

先求出復合函數(shù)在上是單調函數(shù)的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數(shù),其充要條件為即.故選:C.【點睛】本題考查了復合函數(shù)的單調性的判斷問題,充要條件的判斷,屬于基礎題.11、A【解析】

根據(jù)定義,表示出數(shù)列的通項并等于2020.結合的正整數(shù)性質即可確定解的個數(shù).【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.12、B【解析】

由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應用,考查學生分析問題的能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、28【解析】

將已知式轉化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數(shù),關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.14、【解析】

當時,函數(shù)單調遞增,當時,函數(shù)為常數(shù),故需滿足,且,解得答案.【詳解】,當時,函數(shù)單調遞增,當時,函數(shù)為常數(shù),需滿足,且,解得.故答案為:.【點睛】本題考查了根據(jù)函數(shù)單調性解不等式,意在考查學生對于函數(shù)性質的靈活運用.15、【解析】

先求出所有的基本事件個數(shù),再求出“抽取的三張卡片編號之和是偶數(shù)”這一事件包含的基本事件個數(shù),利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數(shù)”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數(shù)”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.16、56【解析】

根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)148萬億元.【解析】

(1)由散點圖知更適宜,對兩邊取自然對數(shù)得,令,,,則,再利用線性回歸方程的計算公式計算即可;(2)將代入所求的回歸方程中計算即可.【詳解】(1)根據(jù)數(shù)據(jù)及圖表可以判斷,更適宜作為全國GDP總量關于的回歸方程.對兩邊取自然對數(shù)得,令,,,得.因為,所以,所以關于的線性回歸方程為,所以關于的回歸方程為.(2)將代入,其中,于是2020年的全國GDP總量約為:萬億元.【點睛】本題考查非線性回歸方程的應用,在處理非線性回歸方程時,先作變換,轉化成線性回歸直線方程來處理,是一道中檔題.18、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.19、(1);(2)列聯(lián)表見解析,有超過的把握認為“晉級成功”與性別有關;(3)分布列見解析,=3【解析】

(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計算晉級成功的人數(shù),填寫列聯(lián)表,計算觀測值,對照臨界值得出結論;(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,知隨機變量服從二項分布,計算對應的概率值,寫出分布列,計算數(shù)學期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級成功的頻率為,所以晉級成功的人數(shù)為(人),填表如下:晉級成功晉級失敗合計男163450女94150合計2575100假設“晉級成功”與性別無關,根據(jù)上表數(shù)據(jù)代入公式可得,所以有超過的把握認為“晉級成功”與性別有關;(3)由頻率分布直方圖知晉級失敗的頻率為,將頻率視為概率,則從本次考試的所有人員中,隨機抽取1人進行約談,這人晉級失敗的概率為0.75,所以可視為服從二項分布,即,,故,,,,.所以的分布列為:01234數(shù)學期望為.或().【點睛】本題考查了頻率分布直方圖和離散型隨機變量的分布列、數(shù)學期望的應用問題,屬于中檔題.若離散型隨機變量,則.20、(1)證明見解析(2)【解析】

(1)由底面為菱形,得,再由底面,可得,結合線面垂直的判定可得平面;(2)以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系.則,,,,.,,,.設平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓練了利用空間向量求解空間角,屬于中檔題.21、(1);(2).【解析】

(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內恰有一個零點,轉化為在區(qū)間內恰有兩個零點,由(1)的結論對分類討論,根據(jù)單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數(shù)在區(qū)間上單調遞增時,在區(qū)間上恒成立.∴(其中),解得.當函數(shù)在區(qū)間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論